[1] Carr PA, Church GM. Genome engineering[J]. Nature Biotechnology, 2009, 27(12):1151-1162. [2] Cho SW, Kim S, Kim JM, et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease[J]. Nature Biotechnology, 2013, 31(3):230-232. [3] Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. [4] Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nature Biotechnology, 2012, 30(5):390-392. [5] Shukla VK, Doyon Y, Miller JC, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245):437-441. [6] Sasaki E, Suemizu H, Shimada A, et al. Generation of transgenic non-human primates with germline transmission[J]. Nature, 2009, 459(7246):523-527. [7] Yang SH, Cheng PH, Banta H, et al. Towards a transgenic model of Huntington’s disease in a non-human primate[J]. Nature, 2008, 453(7197):921-924. [8] Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2):143-148. [9] Mussolino C, Morbitzer R, Lutge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J]. Nucleic Acids Research, 2011, 39(21):9283-9293. [10] Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405. [11] Mussolino C, Cathomen T. RNA guides genome engineering[J]. Nature Biotechnology, 2013, 31(3):208-209. [12] Beerli RR, Barbas CF 3rd. Engineering polydactyl zinc-finger transcription factors[J]. Nature Biotechnology, 2002, 20(2):135-141. [13] Liu Q, Segal DJ, Ghiara JB, et al. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes[J]. Proc Natl Acad Sci USA, 1997, 94(11):5525-5530. [14] Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification[J]. Molecular Cell, 2008, 31(2):294-301. [15] Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959):1501. [16] Deng D, Yan C, Pan X, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors[J]. Science, 2012, 335(6069):720-723. [17] Mercer AC, Gaj T, Fuller RP, et al. Chimeric TALE recombinases with programmable DNA sequence specificity[J]. Nucleic Acids Research, 2012, 40(21):11163-11172. [18] Wyman C, Kanaar R. DNA double-strand break repair:all’s well that ends well[J]. Annual Review of Genetics, 2006, 40:363-383. [19] Maresca M, Lin VG, Guo N, et al. Obligate ligation-gated recombination(ObLiGaRe):custom-designed nuclease-mediated targeted integration through nonhomologous end joining[J]. Genome Research, 2013, 23(3):539-546. [20] Cristea S, Freyvert Y, Santiago Y, et al. In vivo cleavage of transgene donors promotes nuclease-mediated targeted integration[J]. Biotechnology and Bioengineering, 2013, 110(3):871-880. [21] Moehle EA, Rock JM, Lee YL, et al. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases[J]. Proc Natl Acad Sci USA, 2007, 104(9):3055-3060. [22] Orlando SJ, Santiago Y, DeKelver RC, et al. Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology[J]. Nucleic Acids Research, 2010, 38(15):e152. [23] Chen F, Pruett-Miller SM, Huang Y, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases[J]. Nature Methods, 2011, 8(9):753-755. [24] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [25] Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. [26] Terns MP, Terns RM. CRISPR-based adaptive immune systems[J]. Curr Opin Microbiol, 2011, 14(3):321-327. [27] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea:versatile small RNAs for adaptive defense and regulation[J]. Annu Rev Genet, 2011, 45:273-297. [28] Hwang WY, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system[J]. Nature Biotechnology, 2013, 31(3):227-229. [29] Townsend JA, Wright DA, Winfrey RJ, et al. High-frequency modi-fication of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245):442-445. [30] Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040):307. [31] Tesson L, Usal C, Menoret S, et al. Knockout rats generated by embryo microinjection of TALENs[J]. Nature Biotechnology, 2011, 29(8):695-696. [32] Meng X, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases[J]. Nature Biotechnology, 2008, 26(6):695-701. [33] Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nature Biotechnology, 2011, 29(8):697-698. [34] Wang HH, Isaacs FJ, Carr PA, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257):894-898. [35] Church GM, Isaacs FJ, Wang HH. Multiplex automated genome engineering:United States, 8569041 B2[P]. 2013-10-23. [36] Jeong J, Cho N, Jung D, et al. Genome-scale genetic engineering in Escherichia coli[J]. Biotechnology Advances, 2013, 31(6):804-810. [37] Murphy KC. Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme[J]. J Bacteriol, 1991, 173(18):5808-5821. [38] Takahashi N, Kobayashi I. Evidence for the double-strand break repair model of bacteriophage lambda recombination[J]. Proc Natl Acad Sci USA, 1990, 87(7):2790-2794. [39] Muniyappa K, Shaner SL, Tsang SS, et al. Mechanism of the concerted action of recA protein and helix-destabilizing proteins in homologous recombination[J]. Proc Nat Acad Sci USA, 1984, 81(9):2757-2761. [40] Copeland NG, Jenkins NA, Court DL. Recombineering:a powerful new tool for mouse functional genomics[J]. Nature Reviews Genetics, 2001, 2(10):769-779. [41]Muniyappa K, Radding CM. The homologous recombination system of phage lambda. Pairing activities of beta protein[J]. J Biol Chem, 1986, 261(16):7472-7478. [42]Gallagher RR, Li Z, Lewis AO, et al. Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA[J]. Nature Protocols, 2014, 9(10):2301-2316. [43] Mosberg JA, Lajoie MJ, Church GM. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermed-iate[J]. Genetics, 2010, 186(3):791-799. [44] Liang J, Wang Z, He X, et al. DNA modification by sulfur:analysis of the sequence recognition specificity surrounding the modification sites[J]. Nucleic Acids Research, 2007, 35(9):2944-2954. [45] Wang L, Chen S, Xu T, et al. Phosphorothioation of DNA in bacteria by dnd genes[J]. Nature Chemical Biology, 2007, 3(11):709-710. [46] Eckstein F, Gish G. Phosphorothioates in molecular biology[J]. Trends in Biochemical Sciences, 1989, 14(3):97-100. [47] Yu D, Sawitzke JA, Ellis H, et al. Recombineering with overlapping single-stranded DNA oligonucleotides:testing a recombination intermediate[J]. Proc Natl Acad Sci USA, 2003, 100(12):7207-7212. [48] Jin YS, Stephanopoulos G. Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli[J]. Metabolic Engineering, 2007, 9(4):337-347. [49] Kang MJ, Lee YM, Yoon SH, et al. Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method[J]. Biotechnology and Bioengineering, 2005, 91(5):636-642. [50] Alper H, Jin YS, Moxley JF, et al. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli[J]. Metabolic Engineering, 2005, 7(3):155-164. [51] Isaacs FJ, Carr PA, Wang HH, et al. Precise manipulation of chro-mosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040):348-353. [52] Wang HH, Kim H, Cong L, et al. Genome-scale promoter engineering by coselection MAGE[J]. Nature Methods, 2012, 9(6):591-593. [53] Carr PA, Wang HH, Sterling B, et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection[J]. Nucleic Acids Research, 2012, 40(17):e132. [54] Warner JR, Reeder PJ, Karimpour-Fard A, et al. Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nature Biotechnology, 2010, 28(8):856-862. [55] Shoemaker DD, Lashkari DA, Morris D, et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy[J]. Nature Genetics, 1996, 14(4):450-456. [56] Binder S, Siedler S, Marienhagen J, et al. Recombineering in Corynebacterium glutamicum combined with optical nanosensors:a general strategy for fast producer strain generation[J]. Nucleic Acids Research, 2013, 41(12):6360-6369. |