生物技术通报 ›› 2016, Vol. 32 ›› Issue (5): 16-25.doi: 10.13560/j.cnki.biotech.bull.1985.2016.05.003
王晓琳1, 曹爱新2, 周传斌2, 赵恺凝1, 赵国柱1
收稿日期:
2015-07-28
出版日期:
2016-05-25
发布日期:
2016-05-27
作者简介:
王晓琳,女,硕士研究生,研究方向:环境微生物;E-mail:yexiayuan@126.com
基金资助:
WANG Xiao-lin1,CAO Ai-xin2,ZHOU Chuan-bin2,ZHAO Kai-ning1,ZHAO Guo-zhu1
Received:
2015-07-28
Published:
2016-05-25
Online:
2016-05-27
摘要: 垃圾填埋场是全球最重要的人为甲烷排放源之一,其全球年甲烷释放量为35-69 Tg,垃圾填埋场甲烷减排是目前全球温室气体研究的热点。甲烷氧化菌能够氧化分解甲烷,作为减少大气甲烷排放的重要生物汇,对保持大气中甲烷浓度的平衡具有重要意义。从甲烷氧化菌的类型及其特征、甲烷氧化机理着手,介绍了多样性研究方法、填埋场中甲烷氧化菌的活性影响因素及甲烷生物减排应用等最新研究进展。在综述前人研究的基础上,探讨了目前研究的不足,提出了利用甲烷氧化菌复合微生物菌剂等综合处理措施,旨为垃圾填埋场甲烷减排的研究和应用提供新的思路。
王晓琳, 曹爱新, 周传斌, 赵恺凝, 赵国柱. 垃圾填埋场甲烷氧化菌及甲烷减排的研究进展[J]. 生物技术通报, 2016, 32(5): 16-25.
WANG Xiao-lin,CAO Ai-xin,ZHOU Chuan-bin,ZHAO Kai-ning,ZHAO Guo-zhu. Research Progress on Methanotrophic Bacteria in Landfills and the Reduction of Methane Emission[J]. Biotechnology Bulletin, 2016, 32(5): 16-25.
[1] IPCC. Climate Change 2007:the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York:Cambridge University Press, 2007. [2] Kirschke S, Bousquet P, Ciais P, et al. Three decades of global methane sources and sinks[J]. Nature Geoscience, 2013, 6(10):813-823. [3] Conrad R. The global methane cycle:recent advances in understanding the microbial processes involved[J]. Environmental Microbiology Reports, 2009, 1(5):285-292. [4] Albanna M, Warith M, Fernandes L. Kinetics of biological methane oxidation in the presence of non-methane organic compounds in landfill bio-covers[J]. Waste Manage, 2010, 30(2):219-227. [5] Aronson E, Allison S, Helliker BR. Environmental impacts on the diversity of methane-cycling microbes and their resultant function[J]. Frontiers in Microbiology, 2013, 4:225. [6] 梅娟, 赵由才. 填埋场甲烷生物氧化过程及甲烷氧化菌的研究进展[J]. 生态学杂志, 2014, 33(9):2567-2573. [7] Hanson RS, Hanson TE. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2):439-471. [8] 贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21):6774-6785. [9] Semrau JD, Dispirito AA, Yoon S. Methanotrophs and copper[J]. FEMS Microbiology Reviews, 2010, 34(4):496-531. [10] Dunfield PF, Yuryev A, Senin P, et al. Methane oxidation by an ext-remely acidophilic bacterium of the phylum Verrucomicrobia[J]. Nature, 2007, 450(7171):879-882. [11] Pol A, Heijmans K, Harhangi HR, et al. Methanotrophy below pH 1 by a new Verrucomicrobia species[J]. Nature, 2007, 450(7171):874-878. [12] Islam T, Jensen S, Reigstad LJ, et al. Methane oxidation at 55℃ and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum[J]. Proce Natl Acad Sci USA, 2008, 105(1):300-304. [13] Op den Camp HJ, Islam T, Stott MB, et al. Environmental genomic and taxonomic perspectives on methanotrophic Verrucomicrobia[J]. Environmental Microbiology Reports, 2009, 1(5):293-306. [14] van Teeseling MC, Pol A, Harhangi HR, et al. Expanding the verrucomicrobial methanotrophic world:description of three novel species of Methylacidimicrobium gen. nov[J]. Applied and Environmental Microbiology, 2014, 80(21):6782-6791. [15] Kalyuzhnaya MG, Puri AW, Lidstrom ME. Metabolic engineering in methanotrophic bacteria[J]. Metab Eng, 2015, 29:142-152. [16] Deutzmann JS, Hoppert M, Schink B. Characterization and phylogeny of a novel methanotroph, Methyloglobulus morosus gen. nov., spec. nov.[J]. Syst Appl Microbiol, 2014, 37(3):165-169. [17] Tavormina PL, Hatzenpichler R, McGlynn S, et al. Methyloprofu-ndus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the'deep sea-1'clade of marine methanotrophs[J]. Int J Syst Evol Microbiol, 2015, 65(1):251-259. [18] Hirayama H, Abe M, Miyazaki M, et al. Methylomarinovum caldi-curalii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. Nov[J]. Int J Syst Evol Microbiol, 2014, 64(3):989-999. [19] Hoefman S, van der Ha D, Iguchi H, et al. Methyloparacoccus mur-rellii gen. nov., sp. nov., a methanotroph isolated from pond water[J]. Int J Syst Evol Microbiol, 2014, 64(6):2100-2107. [20] Theisen AR, Ali MH, Radajewski S, et al. Regulation of methane oxidation in the facultative methanotroph Methylocella silvestris BL2[J]. Molecular Microbiology, 2005, 58(3):682-692. [21] Semrau JD, DiSpirito AA, Vuilleumier S. Facultative methanotrophy:falseleads, true results, and suggestions for future research. FEMS Microbiology Letters, 2011, 323(1):1-12. [22] Dunfield PF, Dedysh SN. Methylocella:a gourmand among methanotrophs[J]. Trends Microbiol, 2014, 22(7):368-369. [23] Murrell JC, Gilbert B, McDonald IR. Molecular biology and regulation of methane monooxygenase[J]. Archives of Microbiology, 2000, 173(5-6):325-332. [24] Chang YS, HaIsey JL. Detection of methanotrophs in groundwater by PCR[J]. Applied and Environmental Microbiology, 1999, 65(2):648-651. [25] 黄梦青, 张金凤, 杨玉盛, 等. 土壤甲烷氧化菌多样性研究方法进展[J]. 亚热带资源与环境学报, 2013, 8(2):42-48. [26] McDonald IR, Bodrossy L, Chen Y, et al. Molecular ecology techniques for the study of aerobic methanotrophs[J]. Applied and Environmental Microbiology, 2008, 74(5):1305-1315. [27] McDonald IR, Murrell JC. The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs[J]. Applied and Environmental Microbiology, 1997, 63(8):3218-3224. [28] Auman AJ, Speake CC, Lidstrom M E. nifH sequences and nitrogen fixation in type I and typeII methanotrophs[J]. Applied and Environmental Microbiology, 2001, 67(9):4009-4016. [29] Dedysh SN, Ricke P, Liesack W. NifH and NifD phylogenies:an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria[J]. Microbiology, 2004, 150(5):1301-1313. [30] Daniel NM, Joseph BY, Eugene LM, et al. Methanotrophic activity, abundance, and diversity in forested swamp pools:dynamics and influences on methane fluxes[J]. Geomicrobiology Journal, 2004, 21(4):257-271. [31] Horz HP, Raghubanshi AS, Heyer J, et al. Activity and community structure of methane-oxidizing bacteria in a wet meadow soil[J]. FEMS Microbiology Ecology, 2002, 41(3):247-257. [32] Bosse U, Frenzel P. Activity and distribution of methane oxidizing bacteria in flooded rice soil microcosms and in rice plants(Oryzasativa)[J]. Applied and Environmental Microbiology, 1997, 63(4):1199-1207. [33] Radajewski S, Ineson P, Parekh NR, et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature, 2000, 403(6770):646-649. [34] Manefield M, Whiteley AS, Griffiths RI, et al. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny[J]. Applied and Environmental Microbiology, 2002, 68(11):5367-5373. [35] Bull ID, Parekh NR, Hall GH, et al. Detection and classification of atmospheric methane oxidizing bacteria in soil[J]. Nature, 2000, 405(6783):175-178. [36] Dumont MG, Pommerenke B, Casper P, et al. DNA-, rRNA-and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment[J]. Environmental Microbiology, 2011, 13(5):1153-1167. [37] Bowman JP, Sly LI, Nichols PD, et al. Revised taxonomy of the methanotrophs:Description of Methylobacter gen. nov. emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs[J]. Int J Syst Bacteriol, 1993, 43(4):735-753. [38] Dedysh SN, Khmelenina VN, Suzina NE, et al. Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog[J]. Int J Syst Bacteriol, 2002, 52(1):251-261. [39] 蔡元锋, 贾仲君. 土壤大气甲烷氧化菌研究进展[J]. 微生物学报, 2014, 54(8):841-853. [40] Cebron A, Bodrossy L, Stralis-Pavese N, et al. Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity[J]. Applied and Environmental Microbiology, 2007, 73(3):798-807. [41] Stralis-Pavese N, Sessitsch A, Weilharter A, et al. Optimization of diagnostic microarray for application in analyzing landfill methanotroph communities under different plant covers[J]. Environmental Microbiology, 2004, 6(4):347-363. [42] Li TL, Wu TD, Mazéas L, et al. Simultaneous analysis of microbial identity and function using NanoSIMS[J]. Environmental Microbiology, 2008, 10(3):580-588. [43] Hashsham SA, Gulari E, Tiedje JM. Microfluidic systems being adapted for microbial, molecular biological analyses[J]. Microbe-American Society for Microbiology, 2007, 2(11):531-536. [44] Sadasivam BY, Reddy KR. Landfill methane oxidation in soil and bio-based cover systems:a review[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(1):79-107. [45] Scheutz C, Mosbaek H, Kjeldsen P. Attenuation of methane and volatile organic compounds in landfill soil covers[J]. Journal of Environmental Quality, 2004, 33(1):61-71. [46] Kightley D, Nedwell DB, Cooper M. Capacity for methane oxidation in landfill cover soils measured in laboratory scale soil microcosms[J]. Appl Environ Microbiol, 1995, 61(2):592-601. [47] Ait-Benichou S, Jugnia LB, Greer CW, et al. Methanotrophs and methanotrophic activity in engineered landfill biocovers[J]. Waste Management, 2009, 29(9):2509-2517. [48] Cabral AR, Tremblay P, Lefebvre G. Determination of the diffusion coefficient of oxygen for a cover system including a pulp and paper by-product[J]. Geotechnical Testing Journal, 2004, 27(2):184-197. [49] Scheutz C, Kjeldsen P, Bogner JE, et al. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions[J]. Waste Management Research, 2009, 27(5):409-455. [50] Scheutz C, Kjeldsen P. Environmental factors influencing attenuation of methane and hydrochlorofluorocarbons in landfill cover soils[J]. J Environ Qual, 2004, 33(1):72-79. [51] Zhang HH, Yan XF, Cai BC, et al. The effects of aged refuse and sewage sludge on landfill CH4 oxidation and N2O emissions:Roles of moisture content and temperature[J]. Ecological Engineering, 2015, 74:345-350. [52] Christophersen M, Linderod L, Jensen PE, et al. Methane oxidation at low temperatures in soil exposed to landfill gas[J]. Journal of Environmental Quality, 2000, 29(6):1989-1997. [53] Borjesson G, Sundh I, Svensson B. Microbial oxidation of CH4 at different temperatures in landfill cover soils[J]. FEMS Microbiology Ecology, 2004, 48(3):305-312. [54] Christopherson M, Kjeldsen P, Holst H, et al. Lateral gas transport in soil adjacent to an old landfill:Factors governing emissions and methane oxidation[J]. Waste Management and Research, 2001, 19(6):595-612. [55] Li H, Chi ZF, Lu WJ, et al. Sensitivity of methanotrophic community structure, abundance, and gene expression to CH4 and O2 in simulated landfill biocover soil[J]. Environmental Pollution, 2014, 184:347-353. [56] Pawlowska M, Stepniewski W. Biochemical reduction of methane emissions from landfills[J]. Environmental Engineering Science, 2006, 23(4):666-672. [57] He PJ, Yang N, Fang WJ, et al. Interaction and independence on methane oxidation of landfill cover soil among three impact factors:water, oxygen and ammonium[J]. Frontiers of Environmental Science and Engineering in China, 2011, 5(2):175-185. [58] Bender M, Conrad R. Microbial oxidation of methane, ammonium and carbon monoxide, and turnover of nitrous oxide and nitric oxide in soils[J]. Biogeochemistry, 1994, 27(2):97-112. [59] King GM, Schnell S. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations[J]. Applied and Environmental Microbiology, 1994, 60(10):3508-3513. [60] Visscher AD, Cleemput OV. Induction of enhanced CH4 oxidation in soils:NH4+ inhibition patterns[J]. Soil Biology and Biochemistry, 2003, 35(7):907-913. [61] Zhang HH, Li WX, Cai ZC, et al. Landfill CH4 oxidation and N2O emissions by aged refuse:effects of wastewater NH4+-N incubation, heavy metals and pH[J]. Ecological Engineering, 2013, 53:243-249. [62] Keppler F, Hamilton JT, Brass M, et al. Methane emissions from terrestrial plants under aerobic conditions[J]. Nature, 2006, 439(7073):187-191. [63] Bohn S, Brunke P, Gebert J, et al. Improving the aeration of critical fine-grained landfill top cover material by vegetation to increase the microbial methane oxidation efficiency[J]. Waste Management, 2011, 31(5):854-863. [64] Gebert J, Singh BK, Pan Y, et al. Activity and structure of methanotrophic communities in landfill cover soils[J]. Environmental Microbiology Reports, 2009, 1(5):414-423. [65] Stralis-Pavese N, Bodrossy L, Reichenauer TG, et al. 16S rRNA based T-RFLP analysis of methane oxidising bacteria:assessment, critical evalultion of methodology performance and application for landfill site cover soils[J]. Applied Soil Ecology, 2006, 31(3):251-266. [66] Hery M, Singer AC, Kumaresan D, et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil[J]. The ISME Journal, 2008, 2(1):92-104. [67] Chang CY, Tung HH, Tseng IC, et al. Dynamics of methanotrophic communities in tropical alkaline landfill upland soil[J]. Applied Soil Ecology, 2010, 46(2):192-199. [68] Singh BK, Tate KR, Kolipaka G, et al. Effect of afforestation and reforestation of pastures on the activity and population dynamics of methanotrophic bacteria[J]. Applied and Environmental Microbiology, 2007, 73(16):5153-5161. [69] Lee EH, Moon KE, Kim TG, et al. Depth profiles of methane oxidation potentials and methanotrophic community in a lab-scale biocover[J]. Journal of Biotechnology, 2014, 184:56-62. [70] Han D, Zhao YC, Xue BJ, et al. Effect of bio-column composed of aged refuse on methane abatement-A novel configuration of biological oxidation in refuse landfill[J]. Journal of Environmental Sciences, 2010, 22(5):769-776. [71] Contin M, Goi D, Nobili MD. Land application of aerobic sewage sludge does not impair methane oxidation rates of soils[J]. Science of the Total Environment, 2012, 441:10-18. [72] 赵由才, 赵天涛, 韩丹, 等. 生活垃圾卫生填埋场甲烷减排与控制技术研究[J]. 环境污染与防治, 2009, 31(12):48-52. [73] Lou ZY, Wang L, Zhao YC. Consuming un-captured methane from landfill using aged refuse bio-cover[J]. Bioresource Technology, 2011, 102(3):2328-2332. [74] Wang JM, Ban H, Teng XJ, et al. Impacts of pH and ammonia on the leaching of Cu(Ⅱ)and Cd(Ⅱ)from coal fly ash[J]. Chemosphere, 2006, 64(11):1892-1898. [75] Reichenauer TG, Watzinger A, Riesinga J, et al. Impact of different plants on the gas profile of a landfill cover[J]. Waste Management, 2011, 31(5):843-853. [76] 韩丹, 石峰, 柴晓利, 等. 生活垃圾填埋场甲烷自然减排的新途径:厌氧与好氧的共氧化作用[J]. 环境科学学报, 2011, 31(4):791-797. [77] Rostkowski KH, Pfluger AR, Criddle CS. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP[J]. Bioresource Technology, 2013, 132:71-77. [78] Xin JY, Cui JR, Chen JB. Continuous biocatalytic synthesis of epoxypropane using a biofilm reactor[J]. Process Biochemistry, 2003, 38(12):1739-1746. [79] van Hylckama Vlieg JE, Janssen DB. Formation and detoxification of reactive intermediates in the metabolism of chlorinated ethenes[J]. Journal of Biotechnology, 2001, 85(2):81-102. [80] Zhu GB, Jetten MSM, Kuschk P, et al. Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems[J]. Appl Microbiol Biotechnol, 2010, 86:1043-1055. [81] Zhao TT, Zhang LJ, Chen HQ, et al. Co-inhibition of methanogens for methane mitigation in biodegradable wastes[J]. Journal of Environmental Sciences, 2009, 21(6):827-833. [82] Chong TL, Matsufuji Y, Hassan MN. Implementation of the semi-aerobic landfill system(Fukuoka method)in developing countries:A Malaysia cost analysis[J]. Waste Management, 2005, 25(7):702-711. |
[1] | 章妮, 暴涵, 左弟召, 陈克龙. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 2021, 37(11): 276-284. |
[2] | 吴家劲, 朱森林, 周密, 孙会增. 奶牛瘤胃微生物研究进展和趋势[J]. 生物技术通报, 2020, 36(2): 27-38. |
[3] | 史飞飞, 陈通, 程蔚兰, 宋程飞, 季春丽, 李润植. 酸驯化和紫外诱导提高微藻耐酸性[J]. 生物技术通报, 2017, 33(8): 146-151. |
[4] | 王兴文, 王加启, 赵圣国, 李发弟, 卜登攀. 未培养技术在瘤胃产甲烷菌群研究中的应用[J]. 生物技术通报, 2014, 0(6): 67-74. |
[5] | 邵明瑞, 许科伟, 汤玉平, 赵克斌, 符波, 刘和. 三种油气指示菌定量PCR方法的建立及其在油气田土壤中的初步应用[J]. 生物技术通报, 2013, 0(4): 172-178. |
[6] | 周盛;. 甲烷利用细菌HG06的筛选鉴定及其对三种有毒物质降解的研究[J]. , 2008, 0(01): 166-169. |
[7] | 成艳芬;毛胜勇;朱伟云;. 厌氧真菌生态作用及其分子生物学研究进展[J]. , 2007, 0(01): 70-73. |
[8] | 汪开. 美国AgraQuest生物技术公司首次推出真菌熏蒸剂[J]. , 2003, 0(04): 51-51. |
[9] | . 文摘[J]. , 2003, 0(04): 55-55. |
[10] | . 核酸及蛋白质合成、提取、纯化[J]. , 1992, 0(12): 21-21. |
[11] | . 环境保护及农业废物利用[J]. , 1992, 0(10): 87-92. |
[12] | . 环境保护及农业废物利用[J]. , 1992, 0(03): 88-91. |
[13] | . 能源上的应用[J]. , 1991, 0(11): 101-105. |
[14] | . 环境保护上的应用[J]. , 1991, 0(10): 109-114. |
[15] | . 能源上的应用[J]. , 1991, 0(09): 108-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||