生物技术通报 ›› 2017, Vol. 33 ›› Issue (1): 64-75.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.007
孙丽超, 李淑英, 王凤忠, 辛凤姣
收稿日期:
2016-08-29
出版日期:
2017-01-25
发布日期:
2017-01-19
作者简介:
孙丽超,女,助理研究员,研究方向:生物酶研究与应用;E-mail:sun2004go@163.com
基金资助:
SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao
Received:
2016-08-29
Published:
2017-01-25
Online:
2017-01-19
摘要: 萜类化合物是种类最多的一类天然产物,具有抗癌、抗过敏等多种生物活性,在食品、日化、医疗等领域受到广泛关注,展现了巨大的应用潜力和广阔的市场前景。近年来,研究人员采用功能基因组学和代谢组学技术对不同萜类的合成途径进行了深入研究,为萜类的合成生物学研究提供了大量的数据支撑。目前,已经通过合成生物学方法构建出萜类高产的酵母工程菌株,实现了多种目标产物的高效生产,有效提高了萜类的总体生产水平。因此,采用合成生物学策略合成萜类化合物,有望成为植物源萜类生产的有效技术手段。首先介绍了合成生物学概念,进而总结了植物源萜类的重要功能和应用领域,并简述了不同萜类的合成途径,归纳了现有的萜类生产方式,然后深入探讨了萜类生物合成的设计策略,最后以几种常见的萜类为例,详细论述了不同萜类的合成生物学的研究进展。
孙丽超, 李淑英, 王凤忠, 辛凤姣. 萜类化合物的合成生物学研究进展[J]. 生物技术通报, 2017, 33(1): 64-75.
SUN Li-chao, LI Shu-ying, WANG Feng-zhong, XIN Feng-jiao. Research Progresses in the Synthetic Biology of Terpenoids[J]. Biotechnology Bulletin, 2017, 33(1): 64-75.
[1] Nielsen J, Keasling JD. Synergies between synthetic biology and metabolic engineering[J]. Nature Biotechnology, 2011, 29:693-695. [2] Zhou J, Zhang H, Zhang Y, et al. Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide[J]. Metabolic Engineering, 2012, 14:394-400. [3] Sun J, Lin Y, Shen X, et al. Aerobic biosynthesis of hydrocinnamic acids in Escherichia coli with a strictly oxygen-sensitive enoate reductase[J]. Metabolic Engineering, 2016, 35:75-82. [4] Tan D, Wu Q, Chen J, et al. Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates[J]. Metabolic Engineering, 2014, 26:34-47. [5] 陈国强, 王颖. 中国“合成生物学”973项目研究进展[J]. 生物工程学报, 2015, 31(6):995-1008. [6] Wu H, Chen M, Mao Y, et al. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea[J]. Microbial Cell Factories, 2014, 13:158. [7] Li C, Tao F, Ni J, et al. Enhancing the light-driven production of D-lactate by engineering Cyanobacterium using a combinational strategy[J]. Scientific Reports, 2015, 5:9777. [8] Ni J, Tao F, Wang Y, et al. A photoautotrophic platform for the sustainable production of valuable plant natural products from CO2[J]. Green Chemistry, 2016, 18(12):3537-3548. [9] Tan G, Deng Z, Liu T. Recent advances in the elucidation of enzymatic function in natural product biosynthesis[J]. F1000Research, 2015, 4(F1000 Faculty Rev):1399 [10] Ashour M, Wink M, Gershenzon J. Biochemistry of terpenoids:Monoterpenes, sesquiterpenes and diterpenes[M]// Wink M. Biochemistry of Plant Secondary Metabolism. 2rd ed. Wiley-Blackwell, 2010:258-303. [11] Singh B, Sharma RA. Plant terpenes:defense responses, phylogenetic analysis, regulation and clinical applications[J]. Biotechnology, 2015, 5(2):129-151. [12] Amato RJ, Perez C, Pagliaro L. Irofulven, a novel inhibitor of DNA synthesis, in metastatic renal cell cancer[J]. Investigational New Drugs, 2002, 20:413-417. [13] Jennewein S, Croteau R. Taxol:biosynthesis, molecular genetics, and biotechnological applications[J]. Applied Microbiology and Biotechnology, 2001, 57:13-19. [14] Zhang T, Li J, Dong Y, et al. Cucurbitacin E inhibits breast tumor metastasis by suppressing cell migration and invasion[J]. Breast Cancer Research and Treatment, 2012, 135:445-58. [15] Sorensen PM, Iacob RE, Fritzsche M, et al. The natural product cucurbitacin E inhibits depolymerization of actin filaments[J]. ACS Chemical Biology, 2012, 7:1502-1508. [16] Duangmano S, Dakeng S, Jiratchariyakul W, et al. Antiproliferative effects of cucurbitacin B in breast cancer cells:down-regulation of the c-Myc/hTERT/telomerase pathway and obstruction of the cell cycle[J]. International Journal of Molecular Sciences, 2010, 11:5323-5338. [17] Kausar H, Munagala R, Bansal SS, et al. Cucurbitacin B potently suppresses non-small-cell lung cancer growth:identification of intracellular thiols as critical targets[J]. Cancer Letters, 2013, 332:35-45. [18] Guo J, Zhao W, Hao W, et al. Cucurbitacin B induces DNA damage, G2/M phase arrest, and apoptosis mediated by reactive oxygen species(ROS)in leukemia K562 cells[J]. Anti-cancer Agents in Medicinal Chemistry, 2014, 14:1146-1153. [19] Shang Y, Ma Y, Zhou Y, et al. Biosynthesis, regulation, and domestication of bitterness in cucumber[J]. Science, 2014, 346:1084-1088. [20] Ukiya M, Akihisa T, Yasukawa K, et al. Anti-inflammatory and anti-tumor-promoting effects of cucurbitane glycosides from the roots of Bryoniadioica[J]. Journal of Natural Products, 2002, 65:179-183. [21] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24:770-773. [22] Wright CW. Traditional antimalarials and the development of novel antimalarial drugs[J]. Journal of Ethnopharmacology, 2005, 100:67-71. [23] Ford NA, Erdman JW Jr. Are lycopene metabolites metabolically active?[J]. Acta Biochimica Polonica, 2012, 59(1):1-4. [24] Rao LG, Mackinnon ES, Josse RG, et al. Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women[J]. Osteoporosis International, 2007, 18(18):109-115. [25] Martin VJ, Pitera DJ, Withers ST, et al. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids[J]. Nature Biotechnology, 2003, 21:796-802. [26] Aharoni A, Jongsma MA, Bouwmeester HJ. Volatile science?Metabolic engineering of terpenoids in plants[J]. Trends in Plant Science, 2005, 10:594-602. [27] Pichersky E, Gershenzon J. The formation and function of plant volatiles:perfumes for pollinator attraction and defense[J]. Current Opinion in Plant Biology, 2002, 5:237-243. [28] 文福姬, 俞庆善. 植物性天然香料的研究进展[J]. 现代化工, 2005, 25(4):25-28. [29] Balkema-Boomstra AG, Zijlstra S, Verstappen FW, et al. Role of cucurbitacin C in resistance to spider mite(Tetranychusurticae)in cucumber(Cucumissativus L. )[J]. Journal of Chemical Ecology, 2003, 29:225-235. [30] Powell G, Hardie J, Pickett JA, et al. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids[J]. Entomologia Experimentalis Et Applicata, 1997, 84(2):189-193. [31] George KW, Alonso-Gutierrez J, Keasling JD, et al. Isoprenoid drugs, biofuels, and chemicals—Artemisinin, farnesene, and beyond[M]// Schrader J & Bohlmann J. Biotechnology of Isoprenoids. Springer International Publishing, 2015, 148:355-389. [32] Roberts SC. Production and engineering of terpenoids in plant cell culture[J]. Nature Chemical Biology, 2007, 3:387-395. [33] Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes current status and future opportunities[J]. Plant Biotechnology Journal, 2013, 11:169-196. [34] Bouvier F, Rahier A, Camara B. Biogenesis, molecular regulation and function of plant isoprenoids[J]. Progress in Lipid Research, 2005, 44:357-429. [35] Liao P, Hemmerlin A, Bach TJ, et al. The potential of the mevalonate pathway for enhanced isoprenoid production[J]. Biotechnology Advances, 2016, 34(5):697-713. [36] Rohdich F, Hecht S, Gartner K, et al. Studies on the nonmevalonate terpene biosynthetic pathway:metabolic role of IspH(LytB)protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99:1158-1163. [37] Liang PH, Ko TP, Wang AH. Structure, mechanism and function of prenyltransferases[J]. European Journal of Biochemistry / FEBS, 2002, 269:3339-3354. [38] Keeling CI, Weisshaar S, Lin RP, et al. Functional plasticity of paralogous diterpene synthases involved in conifer defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105:1085-1090. [39] Wallaart TE, Pras N, Beekman AC, et al. Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin:proof for the existence of chemotypes[J]. Planta Medica, 2000, 66:57-62. [40] Tian J, Zhao X, Tu Y, et al. A synthetic approach for constructing the 3/6/6/5-fused tetracyclic skeleton of tenuipesine A[J]. Chemistry-An Asian Journal, 2014, 9:724-727. [41] Aharoni A, Jongsma MA, Kim TY, et al. Metabolic engineering of terpenoid biosynthesis in plants[J]. Phytochemistry Reviews, 2006, 5(1):49-58. [42] Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound s-linalool by metabolic engineering of the terpenoid pathway in tomato fruits[J]. Plant Physiology, 2001, 127:1256-1265. [43] Lucker J, Bouwmeester HJ, Schwab W, et al. Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside[J]. The Plant Journal, 2001, 27:315-324. [44] Lavy M, Zuker A, Lewinsohn E, et al. Linalool and linallol oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene[J]. Molecular Breeding, 2002, 9:103-111. [45] Aharoni A, Giri AP, Deuerlein S, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. The Plant Cell, 2003, 15:2866-2884. [46] Bach TJ, Rohmer M. Isoprenoid synthesis in plants and microorganisms:New concepts and experimental approaches[M]. New York Heidelberg Dordrecht London:Springer International Publishing, 2013. [47] Jarboe LR, Zhang X, Wang X, et al. Metabolic engineering for production of biorenewable fuels and chemicals:contributions of synthetic biology[J]. Journal of Biomedicine & Biotechnology, 2010:761042. [48] Farmer WR, Liao JC. Precursor balancing for metabolic engineering of lycopene production in Escherichia coli[J]. Biotechnology Progress, 2001, 17:57-61. [49] Kim SK, Han GH, Seong W, et al. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production[J]. Metabolic Engineering, 2016, 38:228-240. [50] Wang D, Dai Z, Zhang X. Production of plant-derived natural products in yeast cells-A review[J]. Acta Microbiologica Sinica, 2016, 56(3):516-529. [51] Dai Z, Liu Y, Guo J, et al. Yeast synthetic biology for high-value metabolites[J]. FEMS Yeast Research, 2015, 15:1-11. [52] Guo Y, Dong J, Zhou T, et al. YeastFab:the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2015, 43:e88. [53] Lin Z, Zhang Y, Wang J. Engineering of transcriptional regulators enhances microbial stress tolerance[J]. Biotechnology Advances, 2013, 31:986-991. [54] Phillips DR, Rasbery JM, Bartel B, et al. Biosynthetic diversity in plant triterpene cyclization[J]. Current Opinion in Plant Biology, 2006, 9:305-314. [55] Mizutani M. Impacts of diversification of cytochrome P450 on plant metabolism[J]. Biological & Pharmaceutical Bulletin, 2012, 35:824-832. [56] Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumissativus L. [J]. Nature Genetics, 2009, 41:1275-1281. [57] Herrero O, Ramon D, Orejas M. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine[J]. Metabolic Engineering, 2008, 10:78-86. [58] Zhang Y, Yuan Y, Zhang Q, et al. Characterisation of an(S)-lin- alool synthase from kiwifruit(Actinidiaarguta)that catalyses the first committed step in the production of floral lilac compounds [J]. Functional Plant Biology, 2010, 37(3):232-243. [59] Rico J, Pardo E, Orejas M. Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2010, 76:6449-6454. [60] 孙明雪, 刘继栋, 堵国成. 调控酿酒酵母类异戊二烯合成途径强化芳樟醇合成[J]. 生物工程学报, 2013, 29(6):751-759. [61] Liu J, Zhu Y, Du G, et al. Response of Saccharomyces cerevisiae to D-limonene-induced oxidative stress[J]. Applied Microbiology and Biotechnology, 2013, 97:6467-6475. [62] 刘继栋, 周景文, 陈坚. 酿酒酵母单萜耐受机理研究进展[J]. 微生物学报, 2013, 53(6):521-537. [63] Parveen M, Hasan MK, Takahashi J, et al. Response of Saccharomyces cerevisiae to a monoterpene:evaluation of antifungal potential by DNA microarray analysis[J]. The Journal of Antimicrobial Chemotherapy, 2004, 54:46-55. [64] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940-943. [65] Dahl RH, Zhang F, Alonso-Gutierrez J, et al. Engineering dynamic pathway regulation using stress-response promoters[J]. Nature Biotechnology, 2013, 31:1039-1046. [66] Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:E111-E118. [67] Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496:528-532. [68] Paddon CJ, Keasling JD. Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014, 12:355-367. [69] 王学勇, 崔光红, 高伟. 药用植物功能基因克隆新方法——成分差异表型克隆法[J]. 中国中药杂志, 2009, 34(1):14. [70] Gao W, Hillwig ML, Huang L, et al. A functional genomics approach to tanshinone biosynthesis provides stereochemical insights[J]. Organic Letters, 2009, 11:5170-5173. [71] Dai Z, Liu Y, Huang L, et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109:2845-2853. [72] Zhou YJ, Gao W, Rong Q, et al. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production[J]. Journal ofthe American Chemical Society, 2012, 134:3234-3241. [73] Guo J, Zhou YJ, Hillwig ML, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol inyeasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110:12108-12113. [74] Yang L, Ding G, Lin H, et al. Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis[J]. PLoS ONE, 2013, 8:e80464. [75] Xu X, Jiang Q, Ma X, et al. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza[J]. PLoS One, 2014, 9(11):e111679. [76] Gao W, Sun HX, Xiao HB, et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiz[J]. BMC Genomics, 2014, 15:73. [77] Ma XH, Ma Y, Tang JF, et al. The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Molecules, 2015, 20(9):16235-16254. [78] 高伟, 胡添源, 郭娟, 等. 丹参酮合成生物学研究进展[J]. 中国中药杂志, 2015, 40(13):2486-2491. [79] Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-II synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Letters, 2006, 580:5143-5149. [80] Kushiro T, Shibuya M, Ebizuka Y. Beta-amyrin synthase cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants[J]. European journal of biochemistry / FEBS, 1998, 256:238-244. [81] Han JY, Kim HJ, Kwon YS, et al. The Cyt P450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J]. Plant & Cell Physiology, 2011, 52:2062-2073. [82] Zhang G, Cao Q, Liu J, et al. Refactoring β-amyrin synthesis in Saccharomyces cerevisiae[J]. Aiche Journal, 2015, 61(10):3172-3179. [83] Gardner TS. Synthetic biology:from hype to impact[J]. Trends in Biotechnology, 2013, 31(3):123-125. |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[3] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[4] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[5] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[6] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[7] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
[8] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[9] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[10] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[11] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[12] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[13] | 叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24. |
[14] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[15] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||