生物技术通报 ›› 2018, Vol. 34 ›› Issue (12): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240
• 综述与专论 • 下一篇
肖玉洁1, 李泽明1, 易鹏飞1, 胡日生2, 张先文3, 朱列书1
收稿日期:
2018-03-19
出版日期:
2018-12-26
发布日期:
2018-12-24
作者简介:
肖玉洁,女,硕士研究生,研究方向:烟草遗传育种;E-mail:366477546@qq.com
基金资助:
XIAO Yu-jie1, LI Ze-ming1, YI Peng-fei1, HU Ri-sheng2, ZHANG Xian-wen3, ZHU Lie-shu1
Received:
2018-03-19
Published:
2018-12-26
Online:
2018-12-24
摘要: 低温胁迫对植物的地理分布和生长发育有着重要影响。当植物受到低温胁迫时,转录因子通过结合基因启动子上的顺式作用元件激活低温响应基因的表达,从而调控植物体内的信号转导通路来提高植物的耐低温性。着重主要介绍了AP2/ERF、NAC、WRKY、MYB、bZIP、ZFPs等转录因子家族参与植物低温胁迫响应的最新研究进展,并提出了一个转录因子通过与其他因子和启动子元件互作的方式参与低温胁迫响应的基因表达调控网络。
肖玉洁, 李泽明, 易鹏飞, 胡日生, 张先文, 朱列书. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12): 1-9.
XIAO Yu-jie, LI Ze-ming, YI Peng-fei, HU Ri-sheng, ZHANG Xian-wen, ZHU Lie-shu. Research Progress on Response Mechanism of Transcription Factors Involved in Plant Cold Stress[J]. Biotechnology Bulletin, 2018, 34(12): 1-9.
[1] Chinnusamy V, Zhu J, Zhu JK.Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007, 12(10):444. [2] Zhang X, Fowler SG, Cheng H, et al.Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal, 2004, 39(6):905. [3] Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science, 2014, 217-218(1):109-119. [4] Tweneboah S, Oh SK.Biological roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in solanaceous crops[J]. Journal of Plant Biotechnology, 2017, 44(1):1-11. [5] Riechmann JL, Heard J, Martin G, et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105-2110. [6] Bai B, Wu J, Sheng WT, et al.Comparative analysis of anther transcriptome profiles of two different rice male sterile lines genotypes under cold stress[J]. International Journal of Molecular Sciences, 2015, 16(5):11398. [7] Zhang ZJ, Huang RF.Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]. Plant Molecular Biology, 2010, 73(3):241-249. [8] Xu ZS, Chen M, Li LC, et al.Functions and application of the AP2/ERF transcription factor family in crop improvement[J]. Bulletin of Botany, 2011, 53(7):570-585. [9] 李瑞梅, 惠杜娟, 刘姣, 等. 植物抗寒转录因子CBF和ICE研究进展[J]. 广东农业科学, 2012, 39(23):132-135. [10] Li XD, Zhuang KY, Liu ZM, et al.Overexpression of a novel NAC-type tomato transcription factor, SlNAM1, enhances the chilling stress tolerance of transgenic tobacco[J]. Journal of Plant Physiology, 2016, 204:54-65. [11] Zhuang L, Yuan X, Chen Y, et al.PpCBF3 from cold-tolerant kentucky bluegrass involved in freezing tolerance associated with up-regulation of cold-related genes in transgenic Arabidopsis thaliana[J]. PLoS One, 2015, 10(7):e0132928. [12] Wang L, Gao J, Qin X, et al.JcCBF2 gene from Jatropha curcas improves freezing tolerance of Arabidopsis thaliana during the early stage of stress[J]. Molecular Biology Reports, 2015, 42(5):937-945. [13] Morran S, Eini O, Pyvovarenko T, et al.Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal, 2011, 9(2):230. [14] Sobkowiak A, Jończyk M, Adamczyk J, et al.Molecular foundations of chilling-tolerance of modern maize[J]. BMC Genomics, 2016, 17(1):125. [15] Ke YG, Yang ZJ, Yu SW, et al.Characterization of OsDREB6 responsive to osmotic and cold stresses in rice[J]. Journal of Plant Biology, 2016, 42(7):9264-9269. [16] Puranik S, Sahu PP, Srivastava PS, et al.NAC proteins:regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6):369-381. [17] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. Genes & Genomes, 2003, 10(6):239. [18] Shao H, Wang H, Tang X.NAC transcription factors in plant multiple abiotic stress responses:progress and prospects[J]. Frontiers in Plant Science, 2015, 6(902):81. [19] Mao X, Zhang H, Qian X, et al.TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis[J]. Journal of Experimental Botany, 2012, 63(8):2933-2946. [20] Yoo SY, Kim Y, Kim SY, et al.Control of flowering time and cold response by a NAC-domain protein in Arabidopsis[J]. PLoS One, 2007, 2(7):e642. [21] Ma N, Zuo Y, Liang X, et al.The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum, 2013, 149(4):474-486. [22] Fang L, Su L, Sun X, et al.Expression of Vitis amurensis NAC26 in Arabidopsis enhances drought tolerance by modulating jasmonic acid synthesis[J]. Journal of Experimental Botany, 2016, 67(9):2829-2845. [23] Tripathi P, Rabara RC, Rushton PJ.A systems biology perspective on the role of WRKY transcription factors in drought responses in plants[J]. Planta, 2014, 239(2):255-266. [24] Zou C, Jiang W, Yu D.Male gametophyte-specific WRKY34 transcription factor mediates cold sensitivity of mature pollen in Arabidopsis[J]. Journal of Experimental Botany, 2010, 61(14):3901-3914. [25] Zeng T, Kou Y, Liu H, et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14):4863. [26] Kim CY, Vo KTX, Cong DN, et al.Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71[J]. Plant Biotechnology Reports, 2016, 10(1):13-23. [27] Zhang Y, Yu H, Yang X, et al.CsWRKY46, a WRKY transcription factor from cucumber, confers cold resistance in transgenic-plant by regulating a set of cold-stress responsive genes in an ABA-dependent manner[J]. Plant Physiology & Biochemistry, 2016, 108:478-487. [28] Wang Y, Shu Z, Wang W, et al.CsWRKY2, a novel WRKY gene from Camellia sinensis, is involved in cold and drought stress responses[J]. Biologia Plantarum, 2016, 60(3):1-9. [29] 李濯雪, 陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10):8-15. [30] Zhai H, Bai X, Zhu Y, et al.A single-repeat R3-MYB transcription factor MYBC1 negatively regulates freezing tolerance in Arabidopsis[J]. Biochemical & Biophysical Research Communications, 2010, 394(4):1018. [31] Pasquali G, Biricolti S, Locatelli F, et al.Osmyb4 expression improves adaptive responses to drought and cold stress in transgenic apples[J]. Plant Cell Reports, 2008, 27(10):1677. [32] Yang A, Dai X, Zhang WH.A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. Journal of Experimental Botany, 2012, 63(7):2541. [33] Meissner M, Orsini E, Ruschhaupt M, et al.Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation[J]. Plant Cell & Environment, 2013, 36(7):1256-1267. [34] Ding Z, Li S, An X, et al.Transgenic expression of MYB15 confers enhanced sensitivity to abscisic acid and improved drought tolerance in Arabidopsis thaliana[J]. Hereditas, 2009, 36(1):17-29. [35] Baldoni E, Genga A, Cominelli E.Plant MYB transcription factors:their role in drought response mechanisms[J]. International Journal of Molecular Sciences, 2015, 16(7):15811-15851. [36] Yang YN, Zhao G, Yue WQ, et al.Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear(Pyrus communis L.)[J]. Tree Genetics & Genomes, 2013, 9(5):1351-1360. [37] Indeok H, Kumar MR, Kang JG, et al.Genome-wide identification and characterization of bZIP transcription factors inbrassica oleraceaunder cold stress[J]. BioMed Research International, 2016, 2016(2016):1-18. [38] 李田, 孙景宽, 刘京涛. 植物转录因子家族在耐盐抗旱调控网络中的作用[J]. 生命科学, 2015, 27(2):217-227. [39] Ma Q, Dai X, Xu Y, et al.Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]. Plant Physiology, 2009, 150(1):244-256. [40] Hossain MA, Jungil C, Han M, et al.The ABRE-binding bZIP transcription factor OsABF2 is a positive regulator of abiotic stress and ABA signaling in rice[J]. Journal of Plant Physiology, 2010, 167(17):1512. [41] Liu C, Wu Y, Wang X. bZIP transcription factor OsbZIP52/RISBZ5:a potential negative regulator of cold and drought stress response in rice[J]. Planta, 2012, 235(6):1157-1169. [42] 曹红利, 岳川, 王新超, 杨亚军. bZIP转录因子与植物抗逆性研究进展[J]. 南方农业学报, 2012, 43(8):1094-1100. [43] Wang L, Cao H, Qian W, et al.Identification of a novel bZIP transcription factor in Camellia sinensis as a negative regulator of freezing tolerance in transgenic arabidopsis[J]. Annals of Botany, 2017, 119(7):1195-1209. [44] Sun XL, Li Y, Cai H, et al.Arabidopsis bZIP1 transcription factor binding to ABRE cis -element regulates abscisic acid signal transduction[J]. Acta Agronomica Sinica, 2011, 37(4):612-619. [45] Liu DC, Qi WU, Wang YC, et al.Cloning and expression analysis of PtrZPT2-2 from trifoliate orange(Poncirus trifoliata)[J]. Acta Horticulturae Sinica, 2014, 41(1):9-16. [46] Kim JC, Lee SH, Cheong YH, et al.A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants[J]. Plant J, 2001, 25(3):247-259. [47] Yu GH, Jiang LL, Ma XF, et al.A soybean C2H2-type zinc finger gene GmZF1 enhanced cold tolerance in transgenic Arabidopsis[J]. PLoS One, 2014, 9(10):e109399. [48] Ciftci-Yilmaz S, Mittler R.The zinc finger network of plants[J]. Cellular & Molecular Life Sciences, 2008, 65(7/8):1150-1160. [49] Sun SJ, Guo SQ, Yang X, et al.Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice[J]. Journal of Experimental Botany, 2010, 61(10):2807. [50] Doherty CJ, Buskirk HAV, Myers SJ, et al.Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. The Plant Cell, 2009, 21(3):972. [51] Ma Y, Dai X, Xu Y, et al.COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6):1209. [52] Abiri R, Shaharuddin NA, Maziah M, et al.Role of ethylene and the APETALA 2/ethylene response factor superfamily in rice under various abiotic and biotic stress conditions[J]. Environmental & Experimental Botany, 2017, 134:33-44. [53] Shi Y, Tian S, Hou L, et al.Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis[J]. The Plant Cell, 2012, 24(6):2578-2595. [54] Niu YJ, Figueroa P, Browse J.Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(6):2143. [55] Hu Y, Jiang L, Wang F, et al.Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(8):2907-2924. [56] Wu LJ, Chen XL, Ren HY, et al.ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta, 2007, 226(4):. [57] Pil JS, Mi JK, Park JY, et al.Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis[J]. The Plant Journal, 2010, 61(4):661-671. [58] Agarwal M, Hao YJ, Kapoor A, et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance[J]. J Biol Chem, 2006, 281(49):37636-37645 . [59] Cai WT, Yang YL, Wang WW, et al.Overexpression of a wheat(Triticum aestivum L.)bZIP transcription factor gene, TabZIP6, decreased the freezing tolerance of transgenic Arabidopsis seedlings by down-regulating the expression of CBFs[J]. Plant Physiology and Biochemistry, 2018, 124:100-111 . [60] Luo X, Bai X, Zhu D, et al.GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress[J]. Planta, 2012, 235(6):1141-1155 . [61] Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Science An International Journal of Experimental Plant Biology, 2014, 217-218(1):109-119. [62] Vysotskii DA, Ij VVL, Souer E, et al.ABF transcription factors of Thellungiella salsuginea:Structure, expression profiles and interaction with 14-3-3 regulatory proteins[J]. Plant Signaling & Behavior, 2013, 8(1):e22672. [63] Ma NN, Zuo YQ, Liang XQ, et al.The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato[J]. Physiologia Plantarum, 2013, 149(4):474-486. [64] Zou C, Sun K, Mackaluso JD, et al.Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2011, 108(36):14992-14997. [65] Sazegari S, Niazi A, Ahmadi FS.A study on the regulatory network with promoter analysis for Arabidopsis DREB-genes[J]. Bioinformation, 2015, 11(2):101-106. [66] Ha NT, Leipner J, Guerra-Peraza O, et al.Article 3:Characterization of the stress-induced gene ZmCOI6. 1 in maize:Expression and promoter sequences[J]. Tap Chi Sinh Hoc, 2014, 31(3):71-80. [67] Wang Q, Qi W, Wang Y, et al.Isolation and identification of an AP2/ERF factor that binds an allelic cis-element of rice gene LRK6[J]. Genetics Research, 2011, 93(5):319-332. [68] Mishra S, Shukla A, Upadhyay S, et al.Identification, occurrence, and validation of DRE and ABRE Cis-regulatory motifs in the promoter regions of genes of Arabidopsis thaliana[J]. Bulletin of Botany, 2014, 56(4):388-399. [69] Yun KY, Park MR, Mohanty B, et al.Transcriptional regulatory network triggered by oxidative signals configures the early response mechanisms of japonica rice to chilling stress[J]. BMC Plant Biology, 2010, 10(1):16. [70] You J, Zhang L, Song B, et al.Systematic analysis and identification of stress-responsive genes of the NAC gene family in Brachypodium distachyon[J]. PLoS One, 2015, 10(3):e0122027. [71] Lv X, Lan S, Guy KM, et al.Global expressions landscape of NAC transcription factor family and their responses to abiotic stresses in Citrullus lanatus[J]. Scientific Reports, 2016, 6:30574. [72] Peng X, Wu Q, Teng L, et al.Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors[J]. BMC Plant Biology, 2015, 15(1):108. [73] Zou C, Yu D.Analysis of the cold-responsive transcriptome in the mature pollen of Arabidopsis[J]. Journal of Plant Biology, 2010, 53(6):400-416. [74] An D, Yang J, Zhang P.Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress[J]. BMC Genomics, 2012, 13(1):64. |
[1] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[2] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[3] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[4] | 徐靖, 朱红林, 林延慧, 唐力琼, 唐清杰, 王效宁. 甘薯IbHQT1启动子的克隆及上游调控因子的鉴定[J]. 生物技术通报, 2023, 39(8): 213-219. |
[5] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[6] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[7] | 郭怡婷, 赵文菊, 任延靖, 赵孟良. 菊芋NAC转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(6): 217-232. |
[8] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[9] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[10] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[11] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[12] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[13] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[14] | 刘铖霞, 孙宗艳, 罗云波, 朱鸿亮, 曲桂芹. bHLH转录因子的磷酸化调控植物生理功能的研究进展[J]. 生物技术通报, 2023, 39(3): 26-34. |
[15] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||