[1] Ravelich SR, Shelling AN, Wells DN, et al.Expression of TGF-beta1, TGF-beta2, TGF-beta3 and the receptors TGF-betaRI and TGF-betaRII in placentomes of artificially inseminated and nuclear transfer derived bovine pregnancies[J]. Placenta, 2006, 27(2-3):307-316.
[2] Douglas HE.TGF-β in wound healing:a review[J]. J Wound Care, 2010, 19(9):403-406.
[3] Kondaiah P, Taira M, Vempati UD, et al.Transforming growth factor-β5 expression during early development of Xenopus laevis[J]. Mech Dev, 2000, 95(1):207-209.
[4] Kulkarni AB, Karlsson S.Transforming growth factor-β1 knockout mice. A mutation in one cytokine gene causes a dramatic inflammatory disease[J]. Am J Pathol, 1993, 143(1):3-9.
[5] Shull MM, Ormsby I, Kier AB, et al.Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease[J]. Nature, 1992, 359(6397):693-699.
[6] Bartram U, Speer CP.The role of transforming growth factor-β in lung development and disease[J]. Chest, 2004, 125(2):754-765.
[7] 唐懿挺, 钟金城. 牦牛TGF-β2基因片段的克隆测序及系统进化分析[J]. 生物技术通报, 2010(4):125-127.
[8] Ottaviani E, Sassi D, Kletsas D.PDGF- and TGF-β-induced changes in cell shape of invertebrate immunocytes:effect of calcium entry blockers[J]. Eur J Cell Biol, 1997, 74(4):336-341.
[9] Kletsas D, Sassi D, Franchini A, et al.PDGF and TGF-β induce cell shape changes in invertebrate immunocytes via specific cell surface receptors[J]. Eur J Cell Biol, 1998, 75(4):362-366.
[10] Maehr T, Costa MM, Vecino JL, et al.Transforming growth factor-β1b:a second TGF-β1 paralogue in the rainbow trout(Oncorhynchus mykiss)that has a lower constitutive expression but is more responsive to immune stimulation[J]. Fish Shellfish Immun, 2013, 34(2):420-432.
[11] Bergeron KF, Xu X, Brandhorst BP.Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans[J]. Mech Dev, 2011, 128(1-2):71-89.
[12] Warner JF, Lyons DC, Mcclay DR.Left-right asymmetry in the sea urchin embryo:BMP and the asymmetrical origins of the adult[J]. PLoS Biology, 2012, 10(10):e1001404.
[13] Piacentino ML, Ramachandran J, Bradham CA.Late Alk4/5/7 signaling is required for anterior skeletal patterning in sea urchin embryos[J]. Development, 2015, 142(5):943-952.
[14] Feely RA, Sabine CL, Hernandez-Ayon JM, et al.Evidence for upwelling of corrosive “acidified” water onto the continental shelf[J]. Science, 2008, 320(5882):1490-1492.
[15] Feely RA, Sabine CL, Lee K, et al.Impact of anthropogenic CO2 on the CaCO3 system in the oceans[J]. Science, 2004, 305:362-366.
[16] Orr JC, Fabry VJ, Aumont O, et al.Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059):681-686.
[17] Harley CD, Randall HA, Hultgren KM, et al.The impacts of climate change in coastal marine systems[J]. Ecol Lett, 2006, 9(2):228-241.
[18] 王秀利, 单雪, 仇雪梅, 等. Hox基因及其在海胆中的研究进展[J]. 生物技术通报, 2006(4):39-43.
[19] 胡婉彬, 李家祥, 段立柱, 等. 两种海水酸化模式对马粪海胆(Hemicentrotus pulcherrimus)胚胎早期发育的影响[J]. 中国农业科技导报, 2016, 18(3):177-183.
[20] 孙景贤, 刘敏博, 李家祥, 等. 两种海水酸化模式对中间球海胆早期发育及存活的影响[J]. 水产科学, 2017, 36(4):429-435.
[21] Zhan YY, Hu WB, Duan LZ, et al.Effects of seawater acidification on early development of the sea urchin Hemicentrotus pulcherrimus[J]. Aquacult Int, 2016, 25(2):655-678.
[22] 胡婉彬. 马粪海胆(Hemicentrotus pulcherrimus)浮游幼体对海水酸化响应的转录组学研究[D]. 大连:大连海洋大学, 2017.
[23] 陈真, 黄荣杰. 盐诱导高血压大鼠左心室心肌中TNF-α、TGF-β1和MMP-9的表达[J]. 临床与实验病理学杂志, 2015, 31(12):1383-1387.
[24] 常亚青. 海参、海胆生物学研究与养殖[M]. 北京:海洋出版社, 2004.
[25] Stocker TF, Qin D, Plattner GK, et al.Climate change 2013:the physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change[M]. Hans Publishers, 2014.
[26] 吕德亮, 李敏, 吴反修, 等. 雌二醇对中间球海胆生长、性腺发育及胆固醇代谢的影响[J]. 大连海洋大学学报, 2017, 32(5):501-508.
[27] Livak KJ, Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4):402-408.
[28] 平海林, 吴金英, 徐胜威, 等. 大海马转化生长因子β1(TGF-β1)基因的克隆鉴定及功能研究[J]. 中国水产科学, 2011, 18(5):1021-1031.
[29] Harms CA, Kennedystoskopf S, Horne WA, et al.Cloning and sequencing hybrid striped bass(Morone saxatilis × M. chrysops)transforming growth factor-β(TGF-β), and development of a reverse transcription quantitative competitive polymerase chain reaction(RT-qcPCR)assay to measure TGF β mRNA of teleost fish[J]. Fish Shellfish Immun, 2000, 10(1):61-85.
[30] Tafalla C, Aranguren R, Secombes CJ, et al.Molecular characterisation of sea bream(Sparus aurata)transforming growth factor β1[J]. Fish Shellfish Immun, 2003, 14(5):405-421.
[31] Qi PZ, Xie CX, Guo BY, et al.Dissecting the role of transforming growth factor-β1 in topmouth culter immunobiological activity:a fundamental functional analysis[J]. Sci Rep, 2016(6):27179.
[32] Dupont S, Dorey N, Stumpp M, et al.Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis[J]. Mar Biol, 2013, 160(8):1835-1843.
[33] Kurihara H, Yin R, Nishihara GN, et al.Effect of ocean acidification on growth, gonad development and physiology of the sea urchin Hemicentrotus pulcherrimus[J]. Aquat Biol, 2013, 18(3):281-292.
[34] Heuer RM, Esbaugh AJ, Grosell M.Ocean acidification leads to counterproductive intestinal base loss in the gulf toadfish(Opsanus beta)[J]. Physiol Biochem Zool, 2012, 85(5):450-459.
[35] Hu MY, Michael K, Kreiss CM, et al.Temperature modulates the effects of ocean acidification on intestinal ion transport in Atlantic cod, Gadus morhua[J]. Front Physiol, 2016, 7:198.
[36] Monteleone G, Boirivant M, Pallone F, et al.TGF-β1 and Smad7 in the regulation of IBD[J]. Mucosal Immunol, 2008, 1(supplement 1):S50.
[37] Kabat-Zinn J, Singer RH.Sea urchin tube feet:unique structures that allow a cytological and molecular approach to the study of actin and its gene expression[J]. J Cell Biol, 1981, 89(1):109-114. |