生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 229-238.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0436
成温玉1(), 白云1, 贾怀杰2, 强桃艳1, 赵鸿远1, 张博艺1, 郭晓荟1
收稿日期:
2020-04-15
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
成温玉,男,博士,讲师,研究方向:宿主抗病毒天然免疫;E-mail:基金资助:
CHENG Wen-yu1(), BAI Yun1, JIA Huai-jie2, QIANG Tao-yan1, ZHAO Hong-yuan1, ZHANG Bo-yi1, GUO Xiao-hui1
Received:
2020-04-15
Published:
2020-12-26
Online:
2020-12-22
摘要:
猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV)是引起猪腹泻的主要病原之一,可导致猪呕吐、水样腹泻和严重脱水等症状,对仔猪的致死率高达100%,给养猪业造成了巨大的经济损失。PEDV编码的21个蛋白不仅参与病毒增殖,而且在拮抗宿主天然免疫应答中发挥重要作用。目前,已有10个蛋白被证实具有限制或阻断干扰素应答的能力,其通过不同的机制逃避宿主的免疫应答。为了深入理解这些蛋白在病毒感染中的作用以及调控宿主免疫反应的机制,本文对调控宿主免疫应答的PEDV蛋白进行总结,以期为PEDV疫苗的创制和疾病防控奠定理论基础。
成温玉, 白云, 贾怀杰, 强桃艳, 赵鸿远, 张博艺, 郭晓荟. 猪流行性腹泻病毒蛋白拮抗宿主天然免疫应答的研究进展[J]. 生物技术通报, 2020, 36(12): 229-238.
CHENG Wen-yu, BAI Yun, JIA Huai-jie, QIANG Tao-yan, ZHAO Hong-yuan, ZHANG Bo-yi, GUO Xiao-hui. Research Progress on Proteins of PEDV Antagonizing Host Innate Immune Responses[J]. Biotechnology Bulletin, 2020, 36(12): 229-238.
图1 PEDV蛋白拮抗宿主天然免疫信号通路 氨肽酶N(Aminopeptidase-N,APN);CREB结合蛋白(CREB-binding protein,CBP);黑色素瘤分化相关蛋白5(Melanoma differentiation-associated protein 5,MDA5);维甲酸诱导基因Ⅰ(Retinoic acid inducible gene-I,RIG-I);线粒体抗病毒信号蛋白(Mitochondrial antiviral signaling,MAVS);干扰素刺激因子(Stimulator of interferon gene,STING);肿瘤坏死困子受体相关因子(TNF receptor associated factor,TRAF);含诱导IFN-β接头的TIR结构域(TIR-domain-containing adapter-inducing IFN-β,TRIF);核转录因子关必须调节蛋白(NF-κB essential modulator,NEMO);M丝裂原活化蛋白激酶(Mitogen activated protein kinases,MAPK);髓样分化因子88(Myeloid differentiation factor 88,MyD88);Toll样受体(Toll-like receptor,TLR);TANK结合激酶1(TANK-binding kinase 1,TBK);干扰素调节因子(IFN-regulatory factor,IRF);干扰素刺激基因(Interferon stimulated gene,ISG);信号传导与转录激活子(Signal transducers and activators of transcription,STAT);Janus激酶(Janus kinase,JAK)。 表示促进; 表示抑制; 表示剪切
[1] | Sun D, Wang X, Wei S, et al. Epidemiology and vaccine of porcine epidemic diarrhea virus in China:a mini-review[J]. Journal of Veterinary Medical Science, 2016,78(3):355-363. |
[2] |
Wang D, Fang L, Xiao S. Porcine epidemic diarrhea in China[J]. Virus Research, 2016,226:7-13.
URL pmid: 27261169 |
[3] |
Sun J, Li Q, Shao C, et al. Isolation and characterization of Chinese porcine epidemic diarrhea virus with novel mutations and deletions in the S gene[J]. Veterinary Microbiology, 2018,221:81-89.
doi: 10.1016/j.vetmic.2018.05.021 URL pmid: 29981713 |
[4] |
Vlasova AN, Butler JE. Porcine anti-viral immunity[J]. Frontiers in Immunology, 2020,11:399.
URL pmid: 32210972 |
[5] |
Du J, Luo J, Yu J, et al. Manipulation of intestinal antiviral innate immunity and immune evasion strategies of porcine epidemic diarrhea virus[J]. Biomed Research International, 2019. DOI: 10.1155/2019/1862531.
URL pmid: 33313311 |
[6] |
Zhang Q, Yoo D. Immune evasion of porcine enteric coronaviruses and viral modulation of antiviral innate signaling[J]. Virus Research, 2016,226:128-141.
URL pmid: 27212682 |
[7] |
Wang Q, Vlasova AN, Kenney SP, et al. Emerging and re-emerging coronaviruses in pigs[J]. Curr Opin Virol, 2019,34:39-49.
URL pmid: 30654269 |
[8] |
Koonpaew S, Teeravechyan S, Frantz PN, et al. PEDV and PDCoV pathogenesis:the interplay between host innate immune responses and porcine enteric coronaviruses[J]. Frontiers in Veterinary Science, 2019,6:34.
URL pmid: 30854373 |
[9] |
Narayanan K, Ramirez SI, Lokugamage KG, et al. Coronavirus nonstructural protein 1:Common and distinct functions in the regulation of host and viral gene expression[J]. Virus Research, 2015,202:89-100.
URL pmid: 25432065 |
[10] | 郭存财, 刘炎, 黄耀伟. 猪流行性腹泻病毒与宿主抗病毒天然免疫抑制[J]. 中国生物化学与分子生物学报, 2016,32(9):967-975. |
Guo CC, Liu Y, Huang YW. Inhibitory mechanism of host antiviral innate immunity by porcine epidemic diarrhea virus[J]. Chinese Journal of Biochemistry and Molecular Biology, 2016,3(9):967-975. | |
[11] |
Zhang Q, Shi K, Yoo D. Suppression of type I interferon production by porcine epidemic diarrhea virus and degradation of CREB-binding protein by nsp1[J]. Virology, 2016,489:252-268.
URL pmid: 26773386 |
[12] |
Zhang Q, Ke H, Blikslager A, et al. Type III interferon restriction by porcine epidemic diarrhea virus and the role of viral protein nsp1 in IRF1 signaling[J]. Journal of Virology, 2018,92(4):e01677-17.
URL pmid: 29187542 |
[13] | Shen Z, Wang G, Yang Y, et al. A conserved region of nonstructural protein 1 from alphacoronaviruses inhibits host gene expression and is critical for viral virulence[J]. Journal of Biological Chemistry, 2019,294(37):13606-13618. |
[14] | Zhang Q, Ma J, Yoo D. Inhibition of NF-κB activity by the porcine epidemic diarrhea virus nonstructural protein 1 for innate immune evasion[J]. Virology, 2017,510:111-126. |
[15] |
Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses:structures and functions of a large multi-domain protein[J]. Antiviral Research, 2018,149:58-74.
doi: 10.1016/j.antiviral.2017.11.001 URL pmid: 29128390 |
[16] | Xing Y, Chen J, Tu J, et al. The papain-like protease of porcine epidemic diarrhea virus negatively regulates type I interferon pathway by acting as a viral deubiquitinase[J]. Journal of General Virology, 2013,94(Pt7):1554. |
[17] |
Wang Y, Sun A, Sun Y, et al. Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system[J]. Virology Journal, 2019,16(1):1-13.
URL pmid: 30606229 |
[18] | Ye G, Deng F, Shen Z, et al. Structural basis for the dimerization and substrate recognition specificity of porcine epidemic diarrhea virus 3C-like protease[J]. Virology, 2016,494:225-235. |
[19] |
Wang D, Fang L, Shi Y, et al. Porcine epidemic diarrhea virus 3C-like protease regulates its interferon antagonism by cleaving NEMO[J]. Journal of Virology, 2015,90(4):2090-2101.
URL pmid: 26656704 |
[20] |
Zhu X, Fang L, Wang D, et al. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO[J]. Virology, 2017,502:33-38.
URL pmid: 27984784 |
[21] |
Zhu X, Wang D, Zhou J, et al. Porcine deltacoronavirus nsp5 antagonizes type I interferon signaling by cleaving STAT2[J]. Journal of Virology, 2017,91(10):e00003-17.
URL pmid: 28250121 |
[22] | Guo L, Luo X, Li R, et al. Porcine epidemic diarrhea virus infection inhibits interferon signaling by targeted degradation of STAT1[J]. Journal of Virology, 2016,90(18):8281-8292. |
[23] |
Yang L, Xu J, Guo L, et al. Porcine epidemic diarrhea virus-induced epidermal growth factor receptor activation impairs the antiviral activity of type I interferon[J]. Journal of Virology, 2018,92(8):e02095-17.
URL pmid: 29386292 |
[24] | 李红杰, 王晓雪, 高冬生, 等. 猪流行性腹泻病毒Nsp7的亚细胞定位和对Ⅰ型干扰素应答的影响[J]. 畜牧兽医学报, 2017,48(3):501-507. |
Li HJ, Wang XX, Gao DS, et al. Subcellular localization and effect on typeⅠ interferon response of porcine epidemic diarrhea virus nsp7[J]. Acta Veterinaria et Zootechnica Sinica, 2017,48(3):501-507. | |
[25] | 袁双玲. 猪流行性腹泻病毒nsp7抑制Ⅰ型IFN信号转导机制研究[D]. 武汉:华中农业大学, 2017. |
Yuan SL. Studies on the molecular mechanism of porcine epidemic diarrhea virus non-structural protein nsp7 inhibiting IFN-I signaling[D]. Wuhan:Huazhong Agricultural University, 2017. | |
[26] |
Deng X, Baker SC. An “old” protein with a new story:Coronavirus endoribonuclease is important for evading host antiviral defenses[J]. Virology, 2018,517:157-163.
doi: 10.1016/j.virol.2017.12.024 URL pmid: 29307596 |
[27] | Deng X, van Geelen A, Buckley AC, et al. Coronavirus endoribonuclease activity in porcine epidemic diarrhea virus suppresses type I and type III interferon responses[J]. Journal of Virology, 2019,93(8):e02000-18. |
[28] |
Liu X, Fang P, Fang L, et al. Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity[J]. Molecular Immunology, 2019,114:100-107.
URL pmid: 31351410 |
[29] |
Menachery VD, Debbink K, Baric RS. Coronavirus non-structural protein 16:evasion, attenuation, and possible treatments[J]. Virus Research, 2014,194:191-199.
URL pmid: 25278144 |
[30] |
Hou Y, Ke H, Kim J, et al. Engineering a live attenuated porcine epidemic diarrhea virus vaccine candidate via inactivation of the viral 2’-o-methyltransferase and the endocytosis signal of the spike protein[J]. J Virol, 2019,93(15):e00406-19.
URL pmid: 31118255 |
[31] |
Bouvet M, Lugari A, Posthuma CC, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes[J]. J Biol Chem, 2014,289(37):25783-25796.
doi: 10.1074/jbc.M114.577353 URL pmid: 25074927 |
[32] |
Menachery VD, Gralinski LE, Mitchell HD, et al. Middle east respiratory syndrome coronavirus nonstructural protein 16 is necessary for interferon resistance and viral pathogenesis[J]. MSphere, 2017,2(6):e00346-17.
URL pmid: 29152578 |
[33] |
Li F. Structure, function, and evolution of coronavirus spike proteins[J]. Annu Rev Virol, 2016,3(1):237-261.
URL pmid: 27578435 |
[34] | 沈媚, 陈冰清, 于瑞嵩, 等. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017,44(10):2452-2462. |
Shen M, Chen BQ, Yu RS, et al. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017,44(10):2452-2462. | |
[35] |
Chen Y, Zhang Z, Li J, et al. Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis[J]. Virology Journal, 2018,15(1):170.
URL pmid: 30404647 |
[36] |
Sun M, Ma J, Yu Z, et al. Identification of two mutation sites in spike and envelope proteins mediating optimal cellular infection of porcine epidemic diarrhea virus from different pathways[J]. Veterinary Research, 2017,48(1):44.
URL pmid: 28854955 |
[37] | Xu X, Zhang H, Zhang Q, et al. Porcine epidemic diarrhea virus E protein causes endoplasmic reticulum stress and up-regulates interleukin-8 expression[J]. Virol J, 2013,10(1):26. |
[38] |
Xu XG, Zhang HL, Zhang Q, et al. Porcine epidemic diarrhea virus M protein blocks cell cycle progression at S-phase and its subcellular localization in the porcine intestinal epithelial cells[J]. Acta Virologica, 2015,59(3):265-275.
URL pmid: 26435150 |
[39] | 曹丽艳. 猪流行性腹泻病毒感染猪小肠上皮细胞抑制IFN-β产生及激活NF-κB机理研究[D]. 哈尔滨:东北农业大学, 2015. |
Cao LY. The mechanism by which porcine epidemic diarrhea virus inhibits interferon-β production and activates NF-κB in porcine intestinal epithelial cells[D]. Harbin: Northeast Agricultural University, 2015. | |
[40] |
Ding Z, Fang L, Jing H, et al. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1[J]. Journal of Virology, 2014,88(16):8936-8945.
URL pmid: 24872591 |
[41] |
Shan Y, Liu Z, Li G, et al. Nucleocapsid protein from porcine epidemic diarrhea virus isolates can antagonize interferon-λ production by blocking the nuclear factor-κB nuclear translocation[J]. Journal of Zhejiang University-Science B, 2018,19(7):570-580.
URL pmid: 29971995 |
[42] | Cao L, Ge X, Gao Y, et al. Porcine epidemic diarrhea virus infection induces NF-κB activation through the TLR2, TLR3 and TLR9 pathways in porcine intestinal epithelial cells[J]. Journal of General Virology, 2015,96(7):1757-1767. |
[43] |
Xu X, Zhang H, Zhang Q, et al. Porcine epidemic diarrhea virus N protein prolongs S-phase cell cycle, induces endoplasmic reticulum stress, and up-regulates interleukin-8 expression[J]. Veterinary Microbiology, 2013,164(3-4):212-221.
URL pmid: 23562137 |
[44] |
Shi D, Shi H, Sun D, et al. Nucleocapsid interacts with NPM1 and protects it from proteolytic cleavage, enhancing cell survival, and is involved in PEDV growth[J]. Sci Rep, 2017,7:39700.
doi: 10.1038/srep39700 URL pmid: 28045037 |
[45] |
Wongthida P, Liwnaree B, Wanasen N, et al. The role of ORF3 accessory protein in replication of cell-adapted porcine epidemic diarrhea virus(PEDV)[J]. Archives of Virology, 2017,162(9):2553-2563.
URL pmid: 28474223 |
[46] |
Kaewborisuth C, He Q, Jongkaewwattana A. The accessory protein ORF3 contributes to porcine epidemic diarrhea virus replication by direct binding to the spike protein[J]. Viruses, 2018,10(8):e399.
doi: 10.3390/v10080399 URL pmid: 30060558 |
[47] |
Ye S, Li Z, Chen F, et al. Porcine epidemic diarrhea virus ORF3 gene prolongs S-phase, facilitates formation of vesicles and promotes the proliferation of attenuated PEDV[J]. Virus Genes, 2015,51(3):385-392.
URL pmid: 26531166 |
[48] | Si F, Hu X, Wang C, et al. Porcine epidemic diarrhea virus(PEDV)ORF3 enhances viral proliferation by inhibiting apoptosis of infected cells[J]. Viruses, 2020,12(2):214. |
[49] |
Lee C, Kim Y, Jeon JH. JNK and p38 mitogen-activated protein kinase pathways contribute to porcine epidemic diarrhea virus infection[J]. Virus Research, 2016,222:1-12.
URL pmid: 27215486 |
[50] |
Qian S, Zhang W, Jia X, et al. Isolation and identification of porcine epidemic diarrhea virus and its effect on host natural immune response[J]. Frontiers in Microbiology, 2019,10:2272.
doi: 10.3389/fmicb.2019.02272 URL pmid: 31636617 |
[51] |
Temeeyasen G, Sinha A, Gimenez-Lirola LG, et al. Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains[J]. Virology, 2018,517:188-198.
URL pmid: 29249266 |
[52] |
Sun M, Yu Z, Ma J, et al. Down-regulating heat shock protein 27 is involved in porcine epidemic diarrhea virus escaping from host antiviral mechanism[J]. Vet Microbiol, 2017,205:6-13.
URL pmid: 28622863 |
[1] | 成温玉, 张博昕, 赵鸿远, 陈艳, 谢娟平. 天然产物抗猪流行性腹泻病毒研究进展[J]. 生物技术通报, 2022, 38(12): 127-136. |
[2] | 邹晨辰, 阮灵伟, 施泓. Wnt信号通路与无脊椎动物天然免疫[J]. 生物技术通报, 2021, 37(5): 182-196. |
[3] | 陈婷, 谢梅英, 魏立民, 欧阳坤, 程晓, 张永亮. 猪乳外泌体对猪流行性腹泻病毒的抑制作用[J]. 生物技术通报, 2021, 37(12): 141-150. |
[4] | 张立杰, 李晓玉, 岑由飞, 周祖平, 蒲仕明. 衰老进程中小鼠造血干/祖细胞特征性改变对老年免疫失衡的影响[J]. 生物技术通报, 2018, 34(8): 199-203. |
[5] | 杨辉;吴崇超;陈佳;陈伟;杨依丽;罗勇;姚冬生;熊盛;. 蓝藻抗病毒蛋白-N衍生物的克隆、发酵与纯化[J]. , 2012, 0(05): 116-120. |
[6] | 邓召花;张飞云;. 水稻条纹病毒研究进展[J]. , 2006, 0(S1): 45-49. |
[7] | 刘爽;杨爱国;赵琦;赵玉锦;张世煌;. 美洲商陆抗病毒蛋白的研究[J]. , 2005, 0(06): 17-21. |
[8] | 孙盈盈;. 斯坦福研究防止器官移植排斥反应的新方法[J]. , 1997, 0(01): 31-32. |
[9] | 王颖. 有关基因疗法的好消息和坏消息[J]. , 1996, 0(06): 25-26. |
[10] | 孙国凤. 生产人抗体用小鼠开发合同延期[J]. , 1996, 0(06): 28-29. |
[11] | 陶冶. 模拟受孕以抵御类风湿性关节炎的研究方法[J]. , 1996, 0(05): 27-28. |
[12] | 王颖. 移植胎儿组织治疗帕金森氏症获得成功[J]. , 1995, 0(06): 12-12. |
[13] | 孙国凤. 日本首次引进巨噬抗体技术[J]. , 1995, 0(06): 13-13. |
[14] | 孙国凤. 用新筛分技术确认免疫抑制剂的靶分子[J]. , 1995, 0(06): 13-13. |
[15] | 李思经. 家禽活体疫苗获得许可[J]. , 1995, 0(05): 20-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||