生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 239-246.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0429
胡启超(), 罗仍卓么, 魏大为, 杨箭, 贾立, 王兴平(), 马云
收稿日期:
2020-04-15
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
胡启超,男,硕士研究生,研究方向:动物遗传育种与繁殖;E-mail:基金资助:
HU Qi-chao(), LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping(), MA Yun
Received:
2020-04-15
Published:
2020-12-26
Online:
2020-12-22
摘要:
乳腺炎是奶牛最常见的疾病之一,特别是高产奶牛极易发病,给现代奶业造成了巨大的经济损失。为阐明奶牛乳腺炎的分子机制和开展抗乳房炎分子育种,学者们在固有免疫对奶牛乳腺炎的调节机制方面开展了大量的研究工作,发现细胞模式识别受体、信号通路、炎症细胞因子、炎症趋化因子、宿主防御素和抗菌肽等编码基因在乳腺固有免疫反应中起着重要的调节功能。本文综述了乳腺固有免疫相关编码基因的分类、表达模式、分子调控机制,及其乳腺炎相关SNP的挖掘等方面的研究进展,为系统了解和深入研究奶牛乳腺炎的分子机制提供参考。
胡启超, 罗仍卓么, 魏大为, 杨箭, 贾立, 王兴平, 马云. 固有免疫相关编码基因在奶牛乳腺炎调节中的研究进展[J]. 生物技术通报, 2020, 36(12): 239-246.
HU Qi-chao, LUORENG Zhuo-ma, WEI Da-wei, YANG Jian, JIA Li, WANG Xing-ping, MA Yun. Research Progress on Innate Immunity-Related Coding Genes in the Regulation of Cow Mastitis[J]. Biotechnology Bulletin, 2020, 36(12): 239-246.
[1] |
Carvalho MR, Peñagaricano F, Santos JEP, et al. Long-term effects of postpartum clinical disease on milk production, reproduction, and culling of dairy cows[J]. Journal of Dairy Science, 2019,102(12):11701-11717.
URL pmid: 31548073 |
[2] |
Berry R, Watson GM, Jonjic S, et al. Modulation of innate and adaptive immunity by cytomegaloviruses[J]. Nature Reviews Immunology, 2020,20(2):113-127.
URL pmid: 31666730 |
[3] |
Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010,140(6):805-820.
doi: 10.1016/j.cell.2010.01.022 URL pmid: 20303872 |
[4] | Carvalho DCM, Cavalcante-Silva LHA, Lima ÉDA, et al. Marinobufagenin inhibits neutrophil migration and proinflammatory cytokines[J]. Journal of Immunology Research, 2019: 1694520. |
[5] |
Souza R, Rault L, Seyffert N, et al. Lactobacillus casei BL23 modulates the innate immune response in Staphylococcus aureus-stimulated bovine mammary epithelial cells[J]. Beneficial Microbes, 2018,9(6):985-995.
URL pmid: 30041534 |
[6] |
Wellnitz O, Bruckmaier RM. The innate immune response of the bovine mammary gland to bacterial infection[J]. The Veterinary Journal, 2012,192(2):148-152.
URL pmid: 22498784 |
[7] |
Rinaldi M, Li RW, Capuco AV. Mastitis associated transcriptomic disruptions in cattle[J]. Veterinary Immunology and Immunopathology, 2010,138(4):267-279.
URL pmid: 21040982 |
[8] |
Thompson-Crispi K, Atalla H, Miglior F, et al. Bovine mastitis:frontiers in immunogenetics[J]. Front Immunol, 2014,5:493.
URL pmid: 25339959 |
[9] | Buitenhuis B, Røntved CM, Edwards SM, et al. In depth analysis of genes and pathways of the mammary gland involved in the pathogenesis of bovine Escherichia coli-mastitis[J]. BMC Genomics, 2011,12(1):130. |
[10] |
Lutzow YC, Donaldson L, Gray CP, et al. Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection[J]. BMC Veterinary Research, 2008,4:18.
URL pmid: 18513449 |
[11] |
Kościuczuk EM, Lisowski P, Jarczak J, et al. Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci[J]. BMC Vet Res, 2014,10:246.
URL pmid: 25286984 |
[12] | Mitterhuemer S, Petzl W, Krebs S, et al. Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland[J]. BMC Genomics, 2010,11(1):138. |
[13] | 罗仍卓么. 奶牛乳腺炎差异表达基因筛选及miR-146a在乳腺上皮细胞炎症反应中的功能研究[D]. 杨凌:西北农林科技大学, 2018. |
Luoreng ZM. Screening of differentially expressed genes related to mastitis in dairy cows and the function of miR-146a in bMEC inflammatory response[D]. Yangling:Northwest A&F University, 2018. | |
[14] | Wang XG, Ju ZH, Hou MH, et al. Deciphering transcriptome and complex alternative splicing transcripts in mammary gland tissues from cows naturally infected with Staphylococcus aureus mastitis[J]. PLoS One, 2016,11(7):e159719. |
[15] |
Fang LZ, Hou YL, An J, et al. Genome-Wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus[J]. Frontiers in Cellular and Infection Microbiology, 2016,6:193.
URL pmid: 28083515 |
[16] | Kosciuczuk EM, Lisowski P, Jarczak J, et al. Transcriptome profiling of Staphylococci-infected cow mammary gland parenchyma[J]. BMC Veterinary Research, 2017,13(1):161. |
[17] | Günther J, Koczan D, Yang W, et al. Assessment of the immune capacity of mammary epithelial cells:comparison with mammary tissue after challenge with Escherichia coli[J]. Veterinary Research, 2009,40(4):31. |
[18] |
Wellnitz O, Arnold ET, Bruckmaier RM. Lipopolysaccharide and lipoteichoic acid induce different immune responses in the bovine mammary gland[J]. Journal of Dairy Science, 2011,94(11):5405-5412.
doi: 10.3168/jds.2010-3931 URL pmid: 22032363 |
[19] |
Xu T, Deng RZ, Li XZ, et al. RNA-seq analysis of different inflammatory reactions induced by lipopolysaccharide and lipoteichoic acid in bovine mammary epithelial cells[J]. Microbial Pathogenesis, 2019,130:169-177.
URL pmid: 30878619 |
[20] |
Strandberg Y, Gray C, Vuocolo T, et al. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells[J]. Cytokine, 2005,31(1):72-86.
doi: 10.1016/j.cyto.2005.02.010 URL pmid: 15882946 |
[21] |
Swanson KM, Stelwagen K, Dobson J, et al. Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model[J]. Journal of Dairy Science, 2009,92(1):117-129.
URL pmid: 19109270 |
[22] |
Wang X, Xiu L, Hu QL, et al. Deep sequencing-based transcriptional analysis of bovine mammary epithelial cells gene expression in response to in vitro infection with Staphylococcus aureus stains[J]. PLoS One, 2013,8(12):e82117.
doi: 10.1371/journal.pone.0082117 URL pmid: 24358144 |
[23] |
Liu J, Cao XT. Cellular and molecular regulation of innate inflammatory responses[J]. Cellular & Molecular Immunology, 2016,13(6):711-721.
URL pmid: 27818489 |
[24] |
Heguy A, Baldari CT, Macchia G, et al. Amino acids conserved in interleukin-1 receptors(IL-1Rs)and the Drosophila toll protein are essential for IL-1R signal transduction[J]. The Journal of Biological Chemistry, 1992,267(4):2605-2609.
URL pmid: 1531143 |
[25] |
McGuire K, Jones M, Werling D, et al. Radiation hybrid mapping of all 10 characterized bovine Toll-like receptors[J]. Animal Genetics, 2006,37(1):47-50.
URL pmid: 16441295 |
[26] |
Vidya MK, Kumar VG, Sejian V, et al. Toll-like receptors:Significance, ligands, signaling pathways, and functions in mammals[J]. Int Rev Immunol, 2018,37(1):20-36.
doi: 10.1080/08830185.2017.1380200 URL pmid: 29028369 |
[27] | Wang XP, Luoreng ZM, Xu SZ, et al. The structure and sequence analysis of TLR4 gene in cattle[J]. Agricultural Sciences in China, 2009,8(5):632-637. |
[28] |
Taro K, Shizuo A. The role of pattern-recognition receptors in innate immunity:update on Toll-like receptors[J]. Nature Immunology, 2010,11(5):373-384.
doi: 10.1038/ni.1863 URL pmid: 20404851 |
[29] |
Bhattarai D, Worku T, Dad R, et al. Mechanism of pattern recognition receptors(PRRs)and host pathogen interplay in bovine mastitis[J]. Microbial Pathogenesis, 2018,120:64-70.
doi: 10.1016/j.micpath.2018.04.010 URL pmid: 29635052 |
[30] |
Luoreng ZM, Wang XP, Mei CG, et al. Comparison of microRNA profiles between bovine mammary glands infected with Staphylococcus aureus and Escherichia coli[J]. International Journal of Biological Sciences, 2018,14(1):87-99.
URL pmid: 29483828 |
[31] |
Wang XP, Luoreng ZM, Zan LS, et al. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J]. Journal of Dairy Science, 2017,100(9):7648-7658.
URL pmid: 28690061 |
[32] |
Yang J, Chen Y, Jiang KF, et al. MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4[J]. International Journal of Biological Sciences, 2019,15(11):2308-2319.
doi: 10.7150/ijbs.33432 URL pmid: 31595149 |
[33] |
Gondaira S, Higuchi H, Iwano H, et al. Innate immune response of bovine mammary epithelial cells to Mycoplasma bovis[J]. Journal of Veterinary Science, 2018,19(1):79.
URL pmid: 28927255 |
[34] |
Sun LT, Chen L, Wang FG, et al. Exogenous hydrogen sulfide prevents lipopolysaccharide-induced inflammation by blocking the TLR4/NF-κB pathway in MAC-T cells[J]. Gene, 2019,710:114-121.
URL pmid: 31153885 |
[35] |
Li CM, Wang XL, Kuang MQ, et al. UFL1 modulates NLRP3 inflammasome activation and protects against pyroptosis in LPS-stimulated bovine mammary epithelial cells[J]. Molecular Immunology, 2019,112:1-9.
URL pmid: 31078114 |
[36] | Wang X, Zhang MM, Jiang N, et al. Sodium Phenylbutyrate ameliorates inflammatory response induced by Staphylococcus aureus lipoteichoic acid via suppressing TLR2/NF-κB/NLRP3 pathways in MAC-T Cells[J]. Molecules, 2018,23(12):3056. |
[37] |
Askarian F, Wagner T, Johannessen M, et al. Staphylococcus aureus modulation of innate immune responses through Toll-like(TLR)(NOD)-like(NLR)and C-type lectin(CLR)receptors[J]. FEMS Microbiology Reviews, 2018,42(5):656-671.
doi: 10.1093/femsre/fuy025 URL pmid: 29893825 |
[38] |
Xu DD, Wang G, He XJ, et al. 17β-Estradiol and progesterone decrease MDP induced NOD2 expression in bovine mammary epithelial cells[J]. Veterinary Immunology and Immunopathology, 2017,188:59-64.
doi: 10.1016/j.vetimm.2017.04.010 URL pmid: 28615128 |
[39] |
Ghosh S, Dass JFP. Study of pathway cross-talk interactions with NF-κB leading to its activation via ubiquitination or phosphorylation:A brief review[J]. Gene, 2016,584(1):97-109.
URL pmid: 26968890 |
[40] |
Strober W, Murray PJ, Kitani A, et al. Signalling pathways and molecular interactions of NOD1 and NOD2[J]. Nature Reviews Immunology, 2006,6(1):9-20.
URL pmid: 16493424 |
[41] | 徐丹丹, 杨彬, 孙志鹏, 等. NOD1/NOD2介导的信号通路在小鼠金黄色葡萄球菌性乳腺炎中的作用[J]. 中国预防兽医学报, 2015,37(7):528-531. |
Xu DD, Yang B, Sun ZP, et al. Effect of NOD1/ NOD2 mediated signal pathway in Staphylococcus aureus induced mouse mastitis[J]. Chinese Journal of Preventive Veterinary Medicine, 2015,37(7):528-531. | |
[42] |
Wu Q, Liu MC, Yang J, et al. Lactobacillus rhamnosus GR-1 ameliorates Escherichia coli-induced inflammation and cell damage via attenuation of ASC-Independent NLRP3 inflammasome activation[J]. Applied and Environmental Microbiology, 2016,82(4):1173-1182.
URL pmid: 26655757 |
[43] |
Wei LJ, Tan X, Fan GJ, et al. Role of the NOD1/NF-κB pathway on bovine neutrophil responses to crude lipopolysaccharide[J]. The Veterinary Journal, 2016,214:24-31.
URL pmid: 27387722 |
[44] |
Kobayashi K, Inohara N, Hernandez LD, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems[J]. Nature, 2002,416(6877):194-199.
URL pmid: 11894098 |
[45] | 毕崇亮, 刘俊俊, 王亨, 等. 硒对S. aureus诱导的奶牛乳腺上皮细胞Nod2/MAPK/mTORs信号通路关键蛋白表达的影响[J]. 中国农业科学, 2019,52(16):2891-2898. |
Bi CL, Liu JJ, Wang H, et al. Effects of selenium on the key factors in Nod2/MAPK/mTORs signaling pathways in the bMECs infected S. aureus[J]. Scientia Agricultura Sinica, 2019,52(16):2891-2898. | |
[46] |
Hruz P, Zinkernagel AS, Jenikova G, et al. NOD2 contributes to cutaneous defense against Staphylococcus aureus through alpha-toxin-dependent innate immune activation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(31):12873-12878.
URL pmid: 19541630 |
[47] |
Moreira LO, Zamboni DS. NOD1 and NOD2 signaling in infection and inflammation[J]. Frontiers in Immunology, 2012,3:328.
URL pmid: 23162548 |
[48] |
Correa RG, Milutinovic S, Reed JC. Roles of NOD1(NLRC1)and NOD2(NLRC2)in innate immunity and inflammatory diseases[J]. Bioscience Reports, 2012,32(6):597-608.
URL pmid: 22908883 |
[49] | 王兴平, 许尚忠, 马腾壑, 等. 牛TLR4基因的遗传多态性与乳房炎的关联分析[J]. 畜牧兽医学报, 2007(2):120-124. |
Wang XP, Xu SZ, et al. Genetic polymorphism of TLR4 gene and correlation with mastitis in bovine[J]. Chinese Journal of Animal and Veterinary Sciences, 2007(2):120-124. | |
[50] | 陈仁金, 王珍珍, 杨章平, 等. 中国荷斯坦牛Toll样受体4基因的遗传多态性与体细胞评分的关联分析[J]. 中国畜牧兽医, 2013,40(11):134-138. |
Chen RJ, Wang ZZ, Yang ZP, et al. Genetic polymorphism of TLR4 gene and its associations with somatic cell score in Chinese Holstein cattle[J]. China Animal Husbandry & Veterinary Medicine, 2013,40(11):134-138. | |
[51] |
Wang XP, Luoreng ZM, Gao SX, et al. Haplotype analysis of TLR4 gene and its effects on milk somatic cell score in Chinese commercial cattle[J]. Molecular Biology Reports, 2014,41(4):2345-2351.
URL pmid: 24415303 |
[52] | 马腾壑, 许尚忠, 王兴平, 等. 奶牛TLR2基因遗传变异与乳房炎体细胞评分的相关研究[J]. 畜牧兽医学报, 2007(4):332-336. |
Ma TH, Xu SZ, Wang XP, et al. Polymorphism of bovine TLR2 gene and its associations with somatic cell score[J]. Chinese Journal of Animal and Veterinary Sciences, 2007(4):332-336. | |
[53] |
Zhang LP, Gan QF, Ma TH, et al. Toll-like receptor 2 gene polymorphism and its relationship with SCS in dairy cattle[J]. Animal Biotechnology, 2009,20(3):87-95.
URL pmid: 19544205 |
[54] | 孙淑霞, 王长法, 张连江, 等. 中国荷斯坦牛IRAK2基因遗传多样性与乳腺炎的相关性研究[J]. 中国农业科学, 2011,44(20):4317-4325. |
Sun SX, Wang CF, Zang LJ, et al. Study on polymorphisms of IRAK2 gene and its association with mastitis in Chinese Holstein cattle[J]. Scientia Agricultura Sinica, 2011,44(20):4317-4325. | |
[55] | Pant SD, Schenkel FS, Leyva-Baca I, et al. Identification of single nucleotide polymorphisms in bovine CARD15 and their associations with health and production traits in Canadian Holsteins[J]. BMC Genomics, 2007,8(1):421. |
[56] |
Wang W, Cheng L, Yi J, et al. Health and production traits in bovine are associated with single nucleotide polymorphisms in the NOD2 gene[J]. Genetics and Molecular Research, 2015,14(2):3570-3578.
URL pmid: 25966125 |
[57] | 李虹. CXCL10基因与奶牛乳腺炎易感性/抗性相关功能性分子标记的研究[D]. 济南:山东师范大学, 2016. |
Li H. Studie on functional molecular marker of CXCL10 gene associated with mastitis susceptibility/resistance in dairy cattle[D]. Ji’nan:Shandong Normal University, 2016. | |
[58] | 郭润晴. 奶牛乳腺CCL5转录调控机制解析及其功能性分子标记鉴定[D]. 邯郸:河北工程大学, 2018. |
Guo RQ. Analysis of transcriptional regulation mechanism and identification of functional molecular marker of CCL5 in mammary gland of dairy cow[D]. Handan:Hebei University of Engineering, 2018. |
[1] | 丁丽, 都婷婷, 唐琼英, 高权新, 易少奎, 杨国梁. 罗氏沼虾蜕皮周期中内分泌调控和蜕皮信号通路相关基因的表达分析[J]. 生物技术通报, 2023, 39(9): 300-310. |
[2] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[3] | 陈英, 王艺磊, 邹鹏飞. 大黄鱼TRAF6的克隆及表达分析[J]. 生物技术通报, 2022, 38(8): 233-243. |
[4] | 李宇航, 王兴平, 杨箭, 罗仍卓么, 任倩倩, 魏大为, 马云. miR-665在奶牛乳腺上皮细胞炎症中的表达及功能分析[J]. 生物技术通报, 2022, 38(5): 159-168. |
[5] | 邹晨辰, 阮灵伟, 施泓. Wnt信号通路与无脊椎动物天然免疫[J]. 生物技术通报, 2021, 37(5): 182-196. |
[6] | 查星琴, 杨明华, 李永能, 赵素梅, 黄英. Leptin介导JAK/STAT信号通路对猪皮下前脂肪细胞脂类代谢调控的研究[J]. 生物技术通报, 2021, 37(2): 88-95. |
[7] | 王晋鹏, 罗仍卓么, 王兴平, 杨箭, 贾立, 马云, 魏大为. 奶牛乳腺炎治疗及抗炎分子机制的研究进展[J]. 生物技术通报, 2021, 37(12): 212-219. |
[8] | 张萌, 罗芳, 王敏, 武彦泽, 王俊奎, 和东迁, 陈丽尧, 陶金忠. 奶牛分娩后早期血浆代谢物变化研究[J]. 生物技术通报, 2020, 36(6): 191-199. |
[9] | 吴家劲, 朱森林, 周密, 孙会增. 奶牛瘤胃微生物研究进展和趋势[J]. 生物技术通报, 2020, 36(2): 27-38. |
[10] | 张萌, 刘国林, 李向龙, 陈永宏, 白玲荣, 罗芳, 李亚超, 陶金忠. 围产前期添加山楂和黄芪混合物对奶牛血浆代谢组的影响[J]. 生物技术通报, 2019, 35(8): 127-137. |
[11] | 崔荣秀, 张议文, 陈晓倩, 谷彩红, 张荃. 植物bZIP参与胁迫应答调控的最新研究进展[J]. 生物技术通报, 2019, 35(2): 143-155. |
[12] | 明鹏飞, 黄莹莹, 董妍丽, 聂星灿, 冯士彬, 王希春, 程建波, 李锦春, 吴金节, 李玉. LKB1-AMPKα-SIRT1信号通路在奶牛脂肪组织脂代谢中的调控作用[J]. 生物技术通报, 2019, 35(2): 176-181. |
[13] | 郑伟刚, 靳明辉, SwapanChakrabarty, 肖彬, 萧玉涛, 袁海滨. 小地老虎不同组织表达差异揭示其翅发育机制[J]. 生物技术通报, 2019, 35(10): 102-110. |
[14] | 李妙, 周立军. TRAF6与肿瘤关系的研究进展[J]. 生物技术通报, 2017, 33(6): 24-31. |
[15] | 李安毅, 杨洋, 刘莹, 郭晓汐, 郝倩, 徐天瑞, 安输. A-Raf-S214C突变体的构建、表达及其对MAPK信号通路的影响[J]. 生物技术通报, 2017, 33(12): 185-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||