生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 262-271.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0551
收稿日期:
2020-05-09
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
彭文超,女,硕士研究生,研究方向:高产奶牛低氧应激的成因;E-mail: 基金资助:
PENG Wen-chao(), LIU Jian-xin, WANG Di-ming()
Received:
2020-05-09
Published:
2021-01-26
Online:
2021-01-15
摘要:
氧气是哺乳动物机体代谢稳态维持的物质基础,若代谢过程中氧气供给不足,可造成低氧应激。目前,环境低氧、代谢性低氧和携氧细胞功能障碍是造成动物低氧应激的重要成因。目前,低氧对动物机体代谢和组织功能的影响研究主要集中于肺脏、肝脏、消化道、肌肉和乳腺等部位。若处于低氧状态的哺乳动物形成了适应低氧的代谢模式,则可维持其代谢稳态;相反,若动物无法维持低氧状态下的代谢稳态,则会导致机体氧化应激甚至病变。目前,低氧应激在家畜方面的研究主要集中于高原动物代谢适应机制;然而,泌乳期动物机体代谢速率、氧气消耗和自由基水平均较高,但氧在泌乳动物代谢应激形成中的作用及其对泌乳性能的影响,仍有待探索。综述了哺乳动物产生低氧应激的代谢成因与作用结果,旨在探讨哺乳动物低氧应激生物学基础,为进一步从低氧应激调控角度为泌乳动物的健康状况维持提供理论依据。
彭文超, 刘建新, 王迪铭. 哺乳动物低氧应激代谢成因的研究进展[J]. 生物技术通报, 2021, 37(1): 262-271.
PENG Wen-chao, LIU Jian-xin, WANG Di-ming. Research Progress on Metabolic Causes for Hypoxic Stress in Mammalian Animals[J]. Biotechnology Bulletin, 2021, 37(1): 262-271.
[1] | Storz JF, Scott GR, Cheviron ZA. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates[J]. Journal of Experimental Biology, 2010,213(Pt 24):4125-4136. |
[2] | Padhy G, Gangwar A, Sharma M, et al. Plasma kallikrein-bradykinin pathway promotes circulatory nitric oxide metabolite availability during hypoxia[J]. Nitric Oxide, 2016,55-56:36-44. |
[3] |
Parr N, Bishop CM, Batbayar N, et al. Tackling the Tibetan Plateau in a down suit:insights into thermoregulation by bar-headed geese during migration[J]. Journal of Experimental Biology, 2019,222(Pt 19):jeb203695.
doi: 10.1242/jeb.203695 URL |
[4] |
Schodel J, Ratcliffe PJ. Mechanisms of hypoxia signalling:new implications for nephrology[J]. Nature Reviews Nephrology, 2019,15(10):641-659.
doi: 10.1038/s41581-019-0182-z URL |
[5] | AlMarabeh S, Abdulla MH, O’Halloran KD. Is Aberrant reno-renal reflex control of blood pressure a contributor to chronic intermittent hypoxia-induced hypertension[J] Frontiers in Physiology, 2019,10:465. |
[6] | Curtelin D, Morales AD, Torres PR, et al. Cerebral blood flow, frontal lobe oxygenation and intra-arterial blood pressure during sprint exercise in normoxia and severe acute hypoxia in humans[J]. Journal of Cerebral Blood Flow and Metabolism, 2018,38(1):136-150. |
[7] | Mypinder SS, Donald EG, Philip NA, et al. Intracranial pressure and compliance in hypoxic ischemic brain injury patients after cardiac arrest[J]. Resuscitation, 2019,141(36):96-103. |
[8] | 潘建, 肖海峰, 刘福玉, 等. 低氧预适应训练在陆航飞行员高原驻训中的应用研究[J]. 西南国防医药, 2013,23(3):307-309. |
Pan J, Xiao HF, Liu FY, et al. Research on application of hypoxic preconditioning training to army aviation pilots’field training at high altitude[J]. Xinan Guofang Yiyao, 2013,23(3):307-309. | |
[9] | Qiao GH, Qiao CQ, Li JH, et al. Effect of high altitude on nutrient digestibility, rumen fermentation and basal metabolism rate in Chinese Holstein cows on the Tibetan plateau[J]. Animal Production Science, 2013,53:240-246. |
[10] |
Kong ZW, Zhou CS, Jiao JZ, et al. Integrative plasma proteomic and microRNA analysis of Jersey cattle in response to high-altitude hypoxia[J]. Journal of Dairy Science, 2019,102:4606-4618.
URL pmid: 30879823 |
[11] | Neves J, Haider T, Gassmann M, et al. Iron homeostasis in the lungs-a balance between health and disease[J]. Pharmaceuticals(Basel), 2019,12(1):5. |
[12] | Cloonan SM, Choi AM. Mitochondria in lung disease[J]. Journal of Clinical Investigation, 2016,126(3):809-820. |
[13] |
Zhu HH, Wang XT, Sun YH, et al. Pim1 overexpression prevents apoptosis in cardiomyocytes after exposure to hypoxia and oxidative stress via upregulating cell autophagy[J]. Cellular Physiology and Biochemistry, 2018,49(6):2138-2150.
doi: 10.1159/000493817 URL pmid: 30257237 |
[14] |
Eirin A, Ebrahimi B, Kwon SH, et al. Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension[J]. Journal of the American Heart Association, 2016,5(6):e003118.
doi: 10.1161/JAHA.115.003118 URL pmid: 27247333 |
[15] |
Oka T, Morita H, Komuro I. Novel molecular mechanisms and regeneration therapy for heart failure[J]. Journal of Molecular and Cellular Cardiology, 2016,92:46-51.
doi: 10.1016/j.yjmcc.2016.01.028 URL pmid: 26829118 |
[16] | Kietzmann T. Liver zonation in health and disease:hypoxia and hypoxia-inducible transcription factors as concert masters[J]. International Journal of Molecular Sciences, 2019,20(9):2347. |
[17] | Liu Z, Tu K, Wang Y, et al. Hypoxia accelerates aggressiveness of hepatocellular carcinoma cells involving oxidative stress, epithelial-mesenchymal transition and non-canonical hedgehog signaling[J]. Cellular Physiology and Biochemistry, 2017,44(5):1856-1868. |
[18] | Waseem N, Chen PH. Hypoxic hepatitis:A review and clinical update[J]. Journal of Clinical and Translational Hepatology, 2016,4(3):263-268. |
[19] | Luo F, Zou Z, Liu X, et al. Enhanced glycolysis, regulated by HIF-1alpha via MCT-4, promotes inflammation in arsenite-induced carcinogenesis[J]. Carcinogenesis, 2017,38(6):615-626. |
[20] |
Rausch LK, Netzer NC, Hoegel J, et al. The linkage between breast cancer, hypoxia, and adipose tissue[J]. Frontiers in Oncology, 2017,7:211.
URL pmid: 28993797 |
[21] |
Curran CS, Carrillo ER, Ponik SM, et al. Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells[J]. Environmental Toxicology and Pharmacology, 2015,39(1):114-124.
URL pmid: 25481308 |
[22] | Chu CY, Jin YT, Zhang W, et al. CA IX is upregulated in CoCl2-induced hypoxia and associated with cell invasive potential and a poor prognosis of breast cancer[J]. International Journal of Oncology, 2016,48(1):271-280. |
[23] | Shao Y, Wellman TL, Lounsbury KM, et al. Differential regulation of GLUT1 and GLUT8 expression by hypoxia in mammary epithelial cells[J]. American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2014,307(3):237-247. |
[24] |
Mattmiller SA, Corl CM, Gandy JC, et al. Glucose transporter and hypoxia-associated gene expression in the mammary gland of transition dairy cattle[J]. Journal of Dairy Science, 2011,94(6):2912-2922.
doi: 10.3168/jds.2010-3936 URL pmid: 21605761 |
[25] | Cai J, Wang DM, Liang SL, et al. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands[J]. FASEB Journal, 2020,34:8671-8685. |
[26] | Ding D, Hou L, Gui WY, et al. Genetic variation in PTPN1 contributes to metabolic adaptation to high-altitude hypoxia in Tibetan migratory locusts[J]. Nature Communications, 2018(9):4991. |
[27] |
Shao Y, Zhao FQ. Emerging evidence of the physiological role of hypoxia in mammary development and lactation[J]. J Anim Sci Biotechnol, 2014,5(1):9.
doi: 10.1186/2049-1891-5-9 URL pmid: 24444333 |
[28] | Paatero I, Seagroves TN, Vaparanta K, et al. Hypoxia-inducible factor-1alpha induces ErbB4 signaling in the differentiating mammary gland[J]. Journal of Biological Chemistry, 2014,289(32):22459-22469. |
[29] | Anupriya T, Alexey VM, Jin X, et al. Intermittent hypoxia and hypercapnia, a hallmark of obstructive sleep apnea, alters the gut microbiome and metabolome[J]. Msystems, 2018,3(3):1-9. |
[30] |
Vaccari M, Gordon SN, Fourati S, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition[J]. Nature Medicine, 2016,22(7):762-770.
doi: 10.1038/nm.4105 URL pmid: 27239761 |
[31] |
Simmen S, Cosin RJ, Melhem H, et al. Iron prevents hypoxia-associated inflammation through the regulation of nuclear factor-kappaB in the intestinal epithelium[J]. Cellular and Molecular Gastroenterology and Hepatology, 2019,7(2):339-355.
doi: 10.1016/j.jcmgh.2018.10.006 URL pmid: 30704983 |
[32] | Lin WB, Liang MY, Chen GX, et al. MicroRNA profiling of the intestine during hypothermic circulatory arrest in swine[J]. World Journal of Gastroenterology, 2015,21(7):2183-2190. |
[33] |
Mahon PC, Hirota K, Semenza GL. FIH-1:a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity[J]. Genes & Development, 2001,15(20):2675-2686.
doi: 10.1101/gad.924501 URL pmid: 11641274 |
[34] |
Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise[J]. Experimental Physiology, 2016,101(1):28-32.
doi: 10.1113/EP085318 URL pmid: 26391197 |
[35] |
Ameln H, Gustafsson T, Sundberg CG, et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle[J]. The FASEB Journal, 2005,19(8):1009-1011.
doi: 10.1096/fj.04-2304fje URL pmid: 15811877 |
[36] |
Thomas A, Belaidi E, Moulin S, et al. Chronic intermittent hypoxia impairs insulin sensitivity but improves whole-body glucose tolerance by activating skeletal muscle AMPK[J]. Diabetes, 2017,66(12):2942-2951.
doi: 10.2337/db17-0186 URL pmid: 28882901 |
[37] |
Balamurugan K. HIF-1 at the crossroads of hypoxia, inflammation, and cancer[J]. International Journal of Cancer, 2016,138(5):1058-1066.
doi: 10.1002/ijc.29519 URL pmid: 25784597 |
[38] | Teague C, Youngblood JP, Ragan K, et al. A positive genetic correlation between hypoxia tolerance and heat tolerance supports a controversial theory of heat stress[J]. Biology Letter, 2017,13(11):20170309. |
[39] | Lu R, Peng J, Xiao L, et al. Heme oxygenase-1 pathway is involved in delayed protection induced by heat stress against cardiac ischemia-reperfusion injury[J]. International Journal of Cardiology, 2002(82):133-140. |
[40] | Jin XL, Wang K, Liu HY, et al. Protection of bovine mammary epithelial cells from hydrogen peroxide-induced oxidative cell damage by resveratrol[J]. Oxidative Medicine and Cellular Longevity, 2016: 2572175. |
[41] |
Tao S, Dahl GE, Invited review:heat stress effects during late gestation on dry cows and their calves[J]. Journal of Dairy Science, 2013,96(7):4079-4093.
doi: 10.3168/jds.2012-6278 URL pmid: 23664343 |
[42] |
Farsijani NM, Liu Q, Kobayashi H, et al. Renal epithelium regulates erythropoiesis via HIF-dependent suppression of erythropoietin[J]. Journal of Clinical Investigation, 2016,126(4):1425-1437.
doi: 10.1172/JCI74997 URL |
[43] | Shannon RP. Microvascular research:biology and pathology[J]. Congestive Heart Failure, 2006,113(19):235-235. |
[44] | Strumia MM, Colwell LS, Strumia PV, et al. Red cell preservation[J]. Cryobiology, 1974,11(6):536. |
[45] | 张思源, 柴志欣, 钟金城. 牦牛高原低氧适应研究进展[J]. 江苏农业科学, 2016,44(3):13-17. |
Zhang SY, Chai ZX, Zhong JC. Research progress on yak plateau hypoxic adaptation[J]. Jiangsu Agricultural Sciences, 2016,44(3):13-17. | |
[46] | 雷蕾, 包鹏甲, 吴晓云, 等. 不同海拔地区牦牛血液生化指标的比较研究[J]. 中国畜牧兽医, 2018,45(11):3160-3166. |
Lei L, Bao PJ, Wu XY, et al. Comparison study of blood biochemical indicators of yak at different altitudes[J]. China Animal Husbandry&Veterinary Medicine, 2018,45(11):3160-3166. | |
[47] | 巴桑旺堆, 郭仪, 朱彦宾, 等. 牦牛高原低氧适应性生理及分子机制[J]. 世界生态学, 2018,7(2):76-79. |
Basang WD, Guo Y, Zhu YB, et al. Physiology and molecular mechanism of plateau adaptability in yak[J]. International Journal of Ecology, 2018,7(2):76-79. | |
[48] | Mizuno S, Ishizaki T, Toga H, et al. Endogenous asymmetric dimethylarginine pathway in high altitude adapted yaks[J]. Biomed Research International, 2015: 196904. |
[49] | Lan D, Xiong X, Ji W, et al. Transcriptome profile and unique genetic evolution of positively selected genes in yak lungs[J]. Genetica, 2018,146(2):151-160. |
[50] | Wu XY, Ding XZ, Chu M, et al. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak(Bos grunniens)[J]. Journal of Integrative Agriculture, 2015,14(4):741-748. |
[51] | Xiong X, Fu M, Lan D, et al. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors[J]. Animal Biotechnology, 2015,26(3):222-229. |
[52] | 孔小艳, 苟潇, 马腾, 等. 藏猪低氧适应的血液生理指标研究[J]. 云南农业大学学报, 2014,29(2):297-300. |
Kong XY, Gou X, Ma T, et al. Study on blood physiological indicators of adaptation to hypoxia in Tibet pig[J]. Journal of Yunnan Agricultural University, 2014,29(2):297-300. | |
[53] | 强巴央宗, 刘金凤, 商鹏, 等. 高原环境中藏猪血液生理指标测定与比较[J]. 西南农业学报, 2011,24(6):2382-2384. |
Qiangba YZ, Liu JF, Shang P, et al. Determination of blood physiological parameters in Tibet pig at high altitude[J]. Southwest China Journal of Agricultural Sciences, 2011,24(6):2382-2384. | |
[54] | Semenza LG. HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. Journal of Applied Physiology, 2000,88:1474-1480. |
[55] | Zhuang ZN, Guo S, Ji ZP, et al. Hypoxia preconditioning induced HIF-1α promotes glucose metabolism and protects mitochondria in liver I/R injury[J]. Clinics and Research in Hepatology and Gastroenterology, 2015,39(5):610-619. |
[56] | Cartee GD, Douen AG, Ramlal T, et al. Stimulation of glucose transport in skeletal muscle by hypoxia[J]. Journal of Applied Physiology, 1991,70(4):1593-1600. |
[57] | Zheng L, Kelly CJ, Colgan SP. Physiologic hypoxia and oxygen homeostasis in the healthy intestine. A review in the theme:Cellular responses to hypoxia[J]. American Journal of Physiology-Cell Physiology, 2015,309(6):350-360. |
[58] | Smith KA, Waypa GB, Schumacker PT. Redox signaling during hypoxia in mammalian cells[J]. Redox Biology, 2017,13:228-234. |
[59] | Braunstein S, Karpisheva K, Pola C, et al. A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer[J]. Molecular Cell, 2007,28(3):501-512. |
[60] | Lopez HC, Barrio RL, Casado MV, et al. Heregulin/ErbB3 signaling enhances CXCR4-driven rac1 activation and breast cancer cell motility via hypoxia-inducible factor 1alpha[J]. Molecular and Cellular Biology, 2016,36(15):2011-2026. |
[61] | Cummins EP, Keogh CE, Crean D, et al. The role of HIF in immunity and inflammation[J]. Molecular Aspects of Medicine, 2016,47-48:24-34. |
[62] | D'Ignazio L, Bandarra D, Rocha S. NF-kappaB and HIF crosstalk in immune responses[J]. The FEBS Journal, 2016,283(3):413-424. |
[63] | Navarro YJ, Burns M, Anandhan A, et al. Oxidative stress, redox signaling, and autophagy:cell death versus survival[J]. Antioxidants and Redox Signaling, 2014,21(1):66-85. |
[64] | Rankin EB, Nam JM, Giaccia AJ. Hypoxia:Signaling the metastatic cascade[J]. Trends in Cancer, 2016,2(6):295-304. |
[65] | Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer[J]. Endocrine-Related Cancer, 2006,13(3):739-749. |
[66] | Daleprane JB, Freitas VS, Pacheco A, et al. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis[J]. Journal of Nutritional Biochemistry, 2012,23(6):557-566. |
[67] | Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy[J]. EMBO Reports, 2017,18(3):495-509. |
[68] | Roy S, Singh M, Sammi SR, et al. ALA-mediated biphasic downregulation of alpha-7nAchR/HIF-1alpha along with mitochondrial stress modulation strategy in mammary gland chemoprevention[J]. Journal of Cellular Physiology, 2019,234(4):4015-4029. |
[69] | Hou Y, Yang H, Cui Z, et al. Tauroursodeoxycholic acid attenuates endoplasmic reticulum stress and protects the liver from chronic intermittent hypoxia induced injury[J]. Experimental and Therapeutic Medicine, 2017,14(3):2461-2468. |
[70] | Khaire A, Rathod R, Kale A, et al. Vitamin B12 deficiency across three generations adversely influences long-chain polyunsaturated fatty acid status and cardiometabolic markers in rats[J]. Archives of Medical Research, 2016,47(6):427-435. |
[71] | Guney T, Alisik M, Akinci S, et al. Evaluation of oxidant and antioxidant status in patients with vitamin B12 deficiency[J]. Turkish Journal of Medıcal Sciences, 2015,45(6):1280-1284. |
[72] | Daleprane JB, Schmid T, Dehne N, et al. Suppression of hypoxia-inducible factor-1alpha contributes to the antiangiogenic activity of red propolis polyphenols in human endothelial cells[J]. Journal of Nutrition, 2012,142(3):441-447. |
[73] | Illum H, Wang DH, Dowell JE, et al. Phase I dose escalation trial of nitroglycerin in addition to 5-fluorouracil and radiation therapy for neoadjuvant treatment of operable rectal cancer[J]. Surgery, 2015,158(2):460-465. |
[1] | 康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299. |
[2] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[3] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[4] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[5] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[6] | 韩梅, 袁超, 郭婷婷, 吴怡, 岳耀敬, 杨博辉. 哺乳动物手工克隆的研究进展[J]. 生物技术通报, 2020, 36(3): 54-61. |
[7] | 刘融, 崔凯, 白福恒, 刁其玉. 蛋氨酸调控畜禽氧化应激的研究进展[J]. 生物技术通报, 2020, 36(10): 207-214. |
[8] | 吕鹏, 徐嘉擎, 王森, 闫艳春. 杀菌剂苯并异噻唑啉酮对斑马鱼胚胎的急性毒性和氧化应激效应研究[J]. 生物技术通报, 2018, 34(1): 172-182. |
[9] | 饶磊, 饶敏, 仇红红, 李红辉, 刘静, 庄满娇. 纳米硒抗胰岛β细胞凋亡作用与机制的研究[J]. 生物技术通报, 2016, 32(11): 271-277. |
[10] | 王志舒, 谭晓荣, 刘洹洹. 线粒体自噬调控机制研究进展[J]. 生物技术通报, 2015, 31(6): 42-47. |
[11] | 陈秀莉,马利兵. 哺乳动物基因组印记的研究进展[J]. 生物技术通报, 2015, 31(1): 46-50. |
[12] | 柯飞, 王赟, 侯丽芳, 胡兴安, 李佩佩. 哺乳动物正呼肠孤病毒反向遗传学研究进展[J]. 生物技术通报, 2014, 0(5): 15-19. |
[13] | 苏康, 吉爱国. 透明质酸酶的研究进展[J]. 生物技术通报, 2014, 0(3): 15-21. |
[14] | 李铁松,高杨,王颖,李庆伟. 抗增殖蛋白与氧化应激[J]. 生物技术通报, 2013, 0(10): 34-39. |
[15] | 张国俊;胡利宗;李书粉;宋向凤;. 哺乳动物抗凝血酶基因的分子特征、微共线性与适应性进化[J]. , 2012, 0(03): 104-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||