生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 291-299.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0190
康凌云1,2(), 韩露露2, 韩德平3, 陈建胜4, 甘瀚凌4, 邢凯4, 马友记1(), 崔凯2()
收稿日期:
2023-03-03
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
马友记,男,博士,教授,研究方向:绵羊分子育种与生产;E-mail: yjma@gsau.edu.cn;作者简介:
康凌云,男,硕士研究生,研究方向:E-mail: 18821622269@163.com
基金资助:
KANG Ling-yun1,2(), HAN Lu-lu2, HAN De-ping3, CHEN Jian-sheng4, GAN Han-ling4, XING Kai4, MA You-ji1(), CUI Kai2()
Received:
2023-03-03
Published:
2023-09-26
Online:
2023-10-24
摘要:
肠道黏膜氧化损伤与畜禽的生长发育和腹泻等疾病的发生密切相关,而褪黑素作为一种吲哚胺类化合物,具有明显抗氧化保护作用。为探究褪黑素对肠黏膜上皮细胞氧化损伤时的保护作用,本研究选取原代小鼠空肠黏膜上皮细胞,利用硫酸亚铁和过氧化氢处理建立氧化损伤模型,并通过添加不同浓度的褪黑素预处理上皮细胞,检测细胞损伤、氧化产物、抗氧化酶和炎性相关细胞因子的表达变化。结果发现,硫酸亚铁和过氧化氢处理后,黏膜上皮细胞明显受损,丙二醛含量显著增加、抗氧化酶表达水平降低。而褪黑素能明显减轻细胞氧化损伤程度、抑制丙二醛的产生并增加抗氧化酶的表达。同时,褪黑素还能显著减少炎性因子白介素-6的表达,并增加趋化因子白介素-8的表达。因此,褪黑素可以缓解自由基增加诱发的空肠黏膜上皮细胞氧化损伤,并能够减轻细胞损伤引起的炎症反应。
康凌云, 韩露露, 韩德平, 陈建胜, 甘瀚凌, 邢凯, 马友记, 崔凯. 褪黑素缓解空肠黏膜上皮细胞氧化损伤的效果研究[J]. 生物技术通报, 2023, 39(9): 291-299.
KANG Ling-yun, HAN Lu-lu, HAN De-ping, CHEN Jian-sheng, GAN Han-ling, XING Kai, MA You-ji, CUI Kai. Effect of Melatonin on Protecting the Jejunum Mucosal Epithelial Cells from Oxidative Stress Damage[J]. Biotechnology Bulletin, 2023, 39(9): 291-299.
基因Gene | 登录号GenBank ID | 引物序列Primer sequence(5'-3') | 产物长度Product length/bp |
---|---|---|---|
TNF-α | NM_001024860.1 | F: GAGAAGATTCGTGGGCTGAT | 169 |
R: CCTTGTTCTTGTCCTGTGGG | |||
IL-1β | NM_001009465.2 | F: TGATGGCTTATTACAGTGGCAA | 183 |
R: CCATGGCCACAACAACTGAC | |||
IL6 | NM_001009392.1 | F: CCTTCGGTCCAGTTGCCTTCT | 234 |
R: CCAGTGCCTCTTTGCTGCTTTC | |||
β-actin | NM_0010009784.3 | F: GATTCCTATGTGGGCGACGA | 229 |
R: AGGTCTCAAACATGATCTGGGT |
表1 引物序列信息
Table 1 Primer sequence information
基因Gene | 登录号GenBank ID | 引物序列Primer sequence(5'-3') | 产物长度Product length/bp |
---|---|---|---|
TNF-α | NM_001024860.1 | F: GAGAAGATTCGTGGGCTGAT | 169 |
R: CCTTGTTCTTGTCCTGTGGG | |||
IL-1β | NM_001009465.2 | F: TGATGGCTTATTACAGTGGCAA | 183 |
R: CCATGGCCACAACAACTGAC | |||
IL6 | NM_001009392.1 | F: CCTTCGGTCCAGTTGCCTTCT | 234 |
R: CCAGTGCCTCTTTGCTGCTTTC | |||
β-actin | NM_0010009784.3 | F: GATTCCTATGTGGGCGACGA | 229 |
R: AGGTCTCAAACATGATCTGGGT |
图2 FeSO4/H2O2处理可明显引起黏膜上皮细胞氧化损伤 不同字母代表差异显著(P<0.05),下同
Fig. 2 FeSO4/H2O2 treatment significantly causing the oxidative damage to mucosal epithelial cells pifevent letters indicate significant dlifference at(P<0.05)level, the same below
抗氧化因子 Antioxidant factor | 不同处理组 Treatment groups | SEM | P | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | FeSO4/H2O2 | MT0.01 | MT0.1 | MT1.0 | MT5.0 | MT10 | |||
MDA | 4.31bc | 5.21a | 4.37bc | 4.17c | 4.37bc | 4.57b | 4.57b | 0.099 | <0.0001 |
LDH | 3.74a | 3.88a | 3.14b | 3.44ab | 3.08b | 3.85a | 3.63a | 0.132 | 0.0011 |
SOD | 1.94ab | 1.90b | 1.90b | 1.97ab | 1.94ab | 1.97ab | 2.00a | 0.022 | 0.068 |
GSH-Px | 3.76bc | 3.60c | 3.96ab | 4.09ab | 4.25a | 4.12ab | 4.34a | 0.104 | 0.002 |
CAT | 216.58a | 167.22b | 165.83b | 174.87b | 163.45b | 179.04b | 169.65b | 6.008 | <0.01 |
表2 不同浓度褪黑素预处理对黏膜上皮细胞抗氧化因子的表达影响
Table 2 Effects of pretreatment with different concentrations of melatonin on the expressions of antioxidant factors in mucosal epithelial cells
抗氧化因子 Antioxidant factor | 不同处理组 Treatment groups | SEM | P | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | FeSO4/H2O2 | MT0.01 | MT0.1 | MT1.0 | MT5.0 | MT10 | |||
MDA | 4.31bc | 5.21a | 4.37bc | 4.17c | 4.37bc | 4.57b | 4.57b | 0.099 | <0.0001 |
LDH | 3.74a | 3.88a | 3.14b | 3.44ab | 3.08b | 3.85a | 3.63a | 0.132 | 0.0011 |
SOD | 1.94ab | 1.90b | 1.90b | 1.97ab | 1.94ab | 1.97ab | 2.00a | 0.022 | 0.068 |
GSH-Px | 3.76bc | 3.60c | 3.96ab | 4.09ab | 4.25a | 4.12ab | 4.34a | 0.104 | 0.002 |
CAT | 216.58a | 167.22b | 165.83b | 174.87b | 163.45b | 179.04b | 169.65b | 6.008 | <0.01 |
图5 褪黑素调节粘膜上皮细胞氧化损伤时TNF-α、IL-1β及IL-6的mRNA表达水平
Fig. 5 Melatonin regulateing the mRNA expression of TNF-α, IL-1β and IL-6 during oxidative injury of mucosal epithelial cells
[1] |
Fawkner-Corbett D, Antanaviciute A, Parikh K, et al. Spatiotemporal analysis of human intestinal development at single-cell resolution[J]. Cell, 2021, 184(3): 810-826.e23.
doi: 10.1016/j.cell.2020.12.016 pmid: 33406409 |
[2] |
Mahurkar-Joshi S, Rankin CR, Videlock EJ, et al. The colonic mucosal microRNAs, microRNA-219a-5p, and microRNA-338-3p are downregulated in irritable bowel syndrome and are associated with barrier function and MAPK signaling[J]. Gastroenterology, 2021, 160(7): 2409-2422.e19.
doi: 10.1053/j.gastro.2021.02.040 pmid: 33617890 |
[3] |
Chikina AS, Nadalin F, Maurin M, et al. Macrophages maintain epithelium integrity by limiting fungal product absorption[J]. Cell, 2020, 183(2): 411-428.e16.
doi: 10.1016/j.cell.2020.08.048 pmid: 32970988 |
[4] |
Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors[J]. Front Immunol, 2019, 10: 2530.
doi: 10.3389/fimmu.2019.02530 pmid: 31849924 |
[5] |
Michaud E, Mastrandrea C, Rochereau N, et al. Human secretory IgM: an elusive player in mucosal immunity[J]. Trends Immunol, 2020, 41(2): 141-156.
doi: S1471-4906(19)30261-3 pmid: 31928913 |
[6] |
Koch F, Thom U, Albrecht E, et al. Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine[J]. Proc Natl Acad Sci USA, 2019, 116(21): 10333-10338.
doi: 10.1073/pnas.1820130116 pmid: 31064871 |
[7] |
Higashizono K, Fukatsu K, Watkins A, et al. Influences of short-term fasting and carbohydrate supplementation on gut immunity and mucosal morphology in mice[J]. J Parenter Enteral Nutr, 2019, 43(4): 516-524.
doi: 10.1002/jpen.2019.43.issue-4 URL |
[8] |
Schakel L, Veldhuijzen DS, Crompvoets PI, et al. Effectiveness of stress-reducing interventions on the response to challenges to the immune system: a meta-analytic review[J]. Psychother Psychosom, 2019, 88(5): 274-286.
doi: 10.1159/000501645 pmid: 31387109 |
[9] |
Wang SQ, Ma T, Zhao GH, et al. Effect of age and weaning on growth performance, rumen fermentation, and serum parameters in lambs fed starter with limited ewe-lamb interaction[J]. Animals, 2019, 9(10): 825.
doi: 10.3390/ani9100825 URL |
[10] |
Cui K, Wang B, Zhang NF, et al. iTRAQ-based quantitative proteomic analysis of alterations in the intestine of Hu sheep under weaning stress[J]. PLoS One, 2018, 13(7): e0200680.
doi: 10.1371/journal.pone.0200680 URL |
[11] |
Lin L, Jiang XY, Zhang ZL, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection[J]. Gut, 2020, 69(6): 997-1001.
doi: 10.1136/gutjnl-2020-321013 pmid: 32241899 |
[12] |
Seager AL, Shah UK, Mikhail JM, et al. Pro-oxidant induced DNA damage in human lymphoblastoid cells: homeostatic mechanisms of genotoxic tolerance[J]. Toxicol Sci, 2012, 128(2): 387-397.
doi: 10.1093/toxsci/kfs152 pmid: 22539617 |
[13] |
Jarret A, Jackson R, Duizer C, et al. Enteric nervous system-derived IL-18 orchestrates mucosal barrier immunity[J]. Cell, 2020, 180(4): 813-814.
doi: S0092-8674(20)30148-3 pmid: 32084342 |
[14] |
Musa AE, Shabeeb D, Alhilfi HSQ. Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: biochemical evaluation[J]. Medicina, 2019, 55(6): 308.
doi: 10.3390/medicina55060308 URL |
[15] |
Calvo JR, González-Yanes C, Maldonado MD. The role of melatonin in the cells of the innate immunity: a review[J]. J Pineal Res, 2013, 55(2): 103-120.
doi: 10.1111/jpi.12075 pmid: 23889107 |
[16] |
Stauch B, Johansson LC, McCorvy JD, et al. Structural basis of ligand recognition at the human MT1 melatonin receptor[J]. Nature, 2019, 569(7755): 284-288.
doi: 10.1038/s41586-019-1141-3 |
[17] |
Johansson LC, Stauch B, McCorvy JD, et al. XFEL structures of the human MT2 melatonin receptor reveal the basis of subtype selectivity[J]. Nature, 2019, 569(7755): 289-292.
doi: 10.1038/s41586-019-1144-0 |
[18] |
Xia MZ, Liang YL, Wang H, et al. Melatonin modulates TLR4-mediated inflammatory genes through MyD88- and TRIF-dependent signaling pathways in lipopolysaccharide-stimulated RAW264.7 cells[J]. J Pineal Res, 2012, 53(4): 325-334.
doi: 10.1111/jpi.2012.53.issue-4 URL |
[19] |
Su SC, Reiter RJ, Hsiao HY, et al. Functional interaction between melatonin signaling and noncoding RNAs[J]. Trends Endocrinol Metab, 2018, 29(6): 435-445.
doi: 10.1016/j.tem.2018.03.008 URL |
[20] |
Xia YY, Chen SY, Zeng SJ, et al. Melatonin in macrophage biology: current understanding and future perspectives[J]. J Pineal Res, 2019, 66(2): e12547.
doi: 10.1111/jpi.2019.66.issue-2 URL |
[21] |
Fu Y, He CJ, Ji PY, et al. Effects of melatonin on the proliferation and apoptosis of sheep granulosa cells under thermal stress[J]. Int J Mol Sci, 2014, 15(11): 21090-21104.
doi: 10.3390/ijms151121090 pmid: 25405739 |
[22] |
Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control[J]. Adv Exp Med Biol, 2014, 817: 39-71.
doi: 10.1007/978-1-4939-0897-4_3 pmid: 24997029 |
[23] |
Matheis F, Muller PA, Graves CL, et al. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss[J]. Cell, 2020, 180(1): 64-78.e16.
doi: S0092-8674(19)31328-5 pmid: 31923400 |
[24] |
Tao JL, Yang MH, Wu H, et al. Effects of AANAT overexpression on the inflammatory responses and autophagy activity in the cellular and transgenic animal levels[J]. Autophagy, 2018, 14(11): 1850-1869.
doi: 10.1080/15548627.2018.1490852 pmid: 29985091 |
[25] | 颜佳梦. 褪黑素对断奶仔猪生长性能、免疫功能和抗氧化能力的影响[D]. 武汉: 华中农业大学, 2019. |
Yan JM. Study on effects of melatonin on growth performance and immune function and antioxidant capacity of weaning piglets[D]. Wuhan: Huazhong Agricultural University, 2019. | |
[26] | Ren WK, Wang P, Yan JM, et al. Melatonin alleviates weanling stress in mice: involvement of intestinal microbiota[J]. J Pineal Res, 2018, 64(2): 10.1111/jpi.12448. |
[27] | Nita M, Grzybowski A. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults[J]. Oxid Med Cell Longev, 2016, 2016: 3164734. |
[28] |
Wohlgemuth SE, Calvani R, Marzetti E. The interplay between autophagy and mitochondrial dysfunction in oxidative stress-induced cardiac aging and pathology[J]. J Mol Cell Cardiol, 2014, 71: 62-70.
doi: 10.1016/j.yjmcc.2014.03.007 pmid: 24650874 |
[29] | 杨金保, 陈文生, 刘大伟, 等. 室旁核输注褪黑素通过改善氧化应激对抗心肌缺血/再灌注损伤[J]. 中国体外循环杂志, 2019, 17(4): 239-243, 248. |
Yang JB, Chen WS, Liu DW, et al. Paraventricular nucleus infusion of melatonin ameliorates myocardial ischemia-reperfusion injury[J]. Chin J Extracorpor Circ, 2019, 17(4): 239-243, 248. | |
[30] | 徐飞, 杨娜, 王洁茹, 等. 睡眠剥夺引起氧化应激对睾丸及精子的影响[J]. 职业与健康, 2017, 33(21): 3010-3012, 3021. |
Xu F, Yang N, Wang JR, et al. Effect of sleep deprivation induced oxidative stress on testicle and sperm[J]. Occup Heath, 2017, 33(21): 3010-3012, 3021. | |
[31] | 马宇昕, 李国营, 刘靖, 等. 褪黑素对丙烯酰胺致大鼠睾丸氧化损伤和Bax/Bcl-2表达的影响[J]. 解剖学研究, 2015, 37(4): 255-257, 366. |
Ma YX, Li GY, Liu J, et al. Effects of melatonin on acrylamide-induced testicular oxidative damage and Bax/Bcl-2 expression in rats[J]. Anat Res, 2015, 37(4): 255-257, 366.
doi: 10.1002/(ISSN)1097-0185 URL |
|
[32] | 陈宏, 梁艳, 金颖莉, 等. 褪黑素对精神分裂症模型大鼠海马神经元氧化应激损伤的保护作用[J]. 温州医科大学学报, 2020, 50(3): 227-231. |
Chen H, Liang Y, Jin YL, et al. The protective effect of melatonin on oxidative stress injury in hippocampal neurons of schizophrenia model rats[J]. J Wenzhou Med Univ, 2020, 50(3): 227-231. | |
[33] | 邵帅, 江梅, 姜经航, 等. 褪黑素对顺铂诱导的小鼠睾丸支持细胞TM4损伤保护作用机制[J]. 医学研究生学报, 2020, 33(11): 1140-1144. |
Shao S, Jiang M, Jiang JH, et al. Protective effect and mechanism of melatonin on TM4 injury induced by cisplatin in mouse testis Sertoli cells[J]. J Med Postgrad, 2020, 33(11): 1140-1144. | |
[34] | Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase(SOD), catalase(CAT)and glutathione peroxidase(GPX): their fundamental role in the entire antioxidant defence grid[J]. Alex J Med, 2018, 54(4): 287-293. |
[35] | 梁程程, 杨红, 齐聪, 等. 氧化应激对卵巢储备功能下降的影响及中西医抗氧化治疗研究进展[J]. 中国中西医结合杂志, 2021, 41(7): 885-889. |
Liang CC, Yang H, Qi C, et al. Effects of oxidative stress on diminished ovarian reserve and progress of anti-oxidation of integrated Chinese and western medicine[J]. Chin J Integr Tradit West Med, 2021, 41(7): 885-889. | |
[36] | 韩德平. 猪繁殖与呼吸综合征病毒不同致病性毒株致肺损伤机制分析[D]. 北京: 中国农业大学, 2012. |
Han D P. Mechanism analysis of lung injury caused by different pathogenic strains of Porcine Reproductive and respiratory syndrome virus[D]. Beijing: China Agricultural University. 2012. | |
[37] |
Reimund JM, Hirth C, Koehl C, et al. Antioxidant and immune status in active Crohn's disease. A possible relationship[J]. Clin Nutr, 2000, 19(1): 43-48.
doi: 10.1054/clnu.1999.0073 pmid: 10700533 |
[38] |
Bracarense AP FL, Lucioli J, Grenier B, et al. Chronic ingestion of deoxynivalenol and fumonisin, alone or in interaction, induces morphological and immunological changes in the intestine of piglets[J]. Br J Nutr, 2012, 107(12): 1776-1786.
doi: 10.1017/S0007114511004946 URL |
[39] |
张千, 李发弟, 李飞. 断奶应激对幼龄反刍动物免疫系统的影响及其机理[J]. 动物营养学报, 2016, 28(7): 1988-1997.
doi: 10.3969/j.issn.1006-267x.2016.07.003 |
Zhang Q, Li FD, Li F. Effects and mechanism of weaning stress on immune system in young ruminants[J]. Chin J Anim Nutr, 2016, 28(7): 1988-1997. |
[1] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[2] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[3] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[6] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[7] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[8] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[9] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[10] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[11] | 袁存霞, 李艳楠, 张肖冲, 杨瑞, 刘建利, 李靖宇. As3+胁迫下Bacillus sp. ZJS3菌株的生理生化响应特性[J]. 生物技术通报, 2022, 38(7): 236-246. |
[12] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[13] | 张丰文, 周丽亚, 董超, 史延茂. 纳豆中抗氧化肽的分离纯化与活性研究[J]. 生物技术通报, 2022, 38(2): 158-165. |
[14] | 张小妮, 翁伊纯, 范奕浩, 王晓娟, 赵佳宇, 张云龙. Mito-OS-Timer:一种靶向监测线粒体氧化应激的荧光秒表[J]. 生物技术通报, 2022, 38(10): 97-105. |
[15] | 岑潇龙, 雷曦, 马诗云, 陈倩茹, 黄遵锡, 周峻沛, 张蕊. 金黄色葡萄球菌透明质酸裂解酶HylS的异源表达与特性研究[J]. 生物技术通报, 2022, 38(1): 157-167. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||