生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 196-202.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0069
收稿日期:
2021-01-17
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
郑芳芳,女,硕士,研究方向:核酸适配体筛选;E-mail: 基金资助:
ZHENG Fang-fang1(), LIN Jun-sheng2()
Received:
2021-01-17
Published:
2021-10-26
Online:
2021-11-12
摘要:
获得TNF 家族增殖诱导配体(a proliferation inducing ligand,APRIL)的核酸适配体,并考察其亲和特异性。基于磁珠-SELEX技术筛选APRIL适配体,高通量测序获得特异性结合APRIL的序列,在线软件预测其二级结构,应用斑点印迹、酶联寡核苷酸吸附实验和qPCR法测定所获适配体的亲和力和特异性。经过7轮的筛选获得核酸适配体Apt10和Apt16,预测其二级结构均具有茎环结构,斑点印迹和酶联寡核苷酸吸附实验检测结果表明,2条核酸适配体均可特异性识别APRIL蛋白,酶联寡核苷酸吸附实验和qPCR检测Apt10和Apt16的解离常数均在nmol/L范围内。成功筛选获得能特异性结合APRIL的高亲和力DNA适配体。
郑芳芳, 林俊生. 增殖诱导配体蛋白的核酸适配体筛选与特异性研究[J]. 生物技术通报, 2021, 37(10): 196-202.
ZHENG Fang-fang, LIN Jun-sheng. Selection and Specificity of Nucleic Acid Aptamers for a Proliferation Inducing Ligand[J]. Biotechnology Bulletin, 2021, 37(10): 196-202.
SELEX round | APRIL/μg | APRIL incubation time/min | BAFF/μg | BAFF incubation time/min | ssDNA library/pmol |
---|---|---|---|---|---|
1 | 6 | 60 | - | - | 1 000 |
2 | 4 | 45 | - | - | 200 |
3 | 4 | 45 | - | - | 200 |
4 | 4 | 45 | 2 | 30 | 200 |
5 | 2 | 30 | 2 | 30 | 200 |
6 | 2 | 30 | 2 | 30 | 200 |
7 | 2 | 30 | 2 | 30 | 200 |
表1 APRIL适配体筛选条件优化
Table 1 Optimization of the selection conditions of the APRIL aptamers
SELEX round | APRIL/μg | APRIL incubation time/min | BAFF/μg | BAFF incubation time/min | ssDNA library/pmol |
---|---|---|---|---|---|
1 | 6 | 60 | - | - | 1 000 |
2 | 4 | 45 | - | - | 200 |
3 | 4 | 45 | - | - | 200 |
4 | 4 | 45 | 2 | 30 | 200 |
5 | 2 | 30 | 2 | 30 | 200 |
6 | 2 | 30 | 2 | 30 | 200 |
7 | 2 | 30 | 2 | 30 | 200 |
Item | Sequence of random region(5'-3') | Round 4/% | Round 5/% | Round 6/% | Round 7/% | dG/ (kcal·mol-1) | Stem-loop structure | G/% |
---|---|---|---|---|---|---|---|---|
Apt 1 | GGTTGGGTTGGGGGGGTACTCTGAACTCGCATAGCCGGTG | 0.7 | 1.4 | 3.8 | 4.7 | -8.9 | 4 | 45.0 |
Apt 2 | AAGAGGCGGGCGGGTGGGGCTGACCTCGCACTTGGTTCTC | 0.3 | 1.5 | 2.5 | 5.2 | -8.2 | 5 | 42.5 |
Apt 3 | TGGTGGGAGGTATACGGGTGGTGGGTGGGGGTGTTGATGG | 0.1 | 3.1 | 3.3 | 3.4 | -7.5 | 5 | 60.0 |
Apt 5 | GATCCTCGCGTAGGCTCGGGGTGAGGTGGGTGGGTTCGTG | 0.6 | 2.2 | 2.9 | 3.7 | -10.0 | 4 | 50.0 |
Apt 7 | GGTCGGGGTGGGTGGGCGACCTCGCATAAGTTAGGCAGTT | 0.2 | 2.7 | 3.0 | 3.9 | -8.7 | 4 | 45.0 |
Apt 10 | ACTGGGGGGGGTCGGGTGGGTGTCTCGGACCTCGCATCA | 0.5 | 2.3 | 3.1 | 3.8 | -8.8 | 5 | 46.2 |
Apt 14 | TGTTGGGTTGGGGGGGTACTCTGAACTCGCATAGCCGGTG | 0.1 | 1.4 | 4.2 | 4.2 | -9.0 | 3 | 42.5 |
Apt 16 | GGTCGGGTGGGTGGGCGACCTCGCATAGCGATTGATGATC | 0.1 | 1.0 | 4.2 | 4.6 | -11.5 | 3 | 42.5 |
表2 候选序列信息
Table 2 Sequences of candidate aptamers
Item | Sequence of random region(5'-3') | Round 4/% | Round 5/% | Round 6/% | Round 7/% | dG/ (kcal·mol-1) | Stem-loop structure | G/% |
---|---|---|---|---|---|---|---|---|
Apt 1 | GGTTGGGTTGGGGGGGTACTCTGAACTCGCATAGCCGGTG | 0.7 | 1.4 | 3.8 | 4.7 | -8.9 | 4 | 45.0 |
Apt 2 | AAGAGGCGGGCGGGTGGGGCTGACCTCGCACTTGGTTCTC | 0.3 | 1.5 | 2.5 | 5.2 | -8.2 | 5 | 42.5 |
Apt 3 | TGGTGGGAGGTATACGGGTGGTGGGTGGGGGTGTTGATGG | 0.1 | 3.1 | 3.3 | 3.4 | -7.5 | 5 | 60.0 |
Apt 5 | GATCCTCGCGTAGGCTCGGGGTGAGGTGGGTGGGTTCGTG | 0.6 | 2.2 | 2.9 | 3.7 | -10.0 | 4 | 50.0 |
Apt 7 | GGTCGGGGTGGGTGGGCGACCTCGCATAAGTTAGGCAGTT | 0.2 | 2.7 | 3.0 | 3.9 | -8.7 | 4 | 45.0 |
Apt 10 | ACTGGGGGGGGTCGGGTGGGTGTCTCGGACCTCGCATCA | 0.5 | 2.3 | 3.1 | 3.8 | -8.8 | 5 | 46.2 |
Apt 14 | TGTTGGGTTGGGGGGGTACTCTGAACTCGCATAGCCGGTG | 0.1 | 1.4 | 4.2 | 4.2 | -9.0 | 3 | 42.5 |
Apt 16 | GGTCGGGTGGGTGGGCGACCTCGCATAGCGATTGATGATC | 0.1 | 1.0 | 4.2 | 4.6 | -11.5 | 3 | 42.5 |
[1] |
Hahne M, Kataoka T, Schrter M, et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth[J]. Journal of Experimental Medicine, 1998, 188(6):1185-1190.
doi: 10.1084/jem.188.6.1185 URL |
[2] |
Rennert P, Schneider P, Cachero TG, et al. A soluble form of B cell maturation antigen, a receptor for the tumor necrosis factor family member APRIL, inhibits tumor cell growth[J]. Journal of Experimental Medicine, 2000, 192(11):1677-1683.
doi: 10.1084/jem.192.11.1677 URL |
[3] | 潘超, 等. APRIL及PGR检测指标在胃炎, 胃癌中的诊断价值分析[J]. 胃肠病学和肝病学杂志, 2019, 28(6):606-609. |
Pan C, et al. Analysis of the diagnostic value of APRIL and PGR in gastritis and gastric cancer[J]. Chinese Journal of Gastroenterology and Hepatology, 2019, 28(6):606-609. | |
[4] |
Gao Q, Li Q Xue Z, et al. In vitro and in vivo evaluation of a humanized anti-APRIL antibody[J]. Current Molecular Medicine, 2013, 13(3):464-465.
pmid: 23331019 |
[5] | Ashkenazi AJ, Dodge KH, Grewal I, et al. Anti-APRIL monoclonal antibody and its use for the treatment of an immune related disease or cancer:EP 1666052 B1[P], 2011-06-08. |
[6] | Guadagnoli M, Kimberley FC, et al. Development and characterization of APRIL antagonistic monoclonal anti-bodies for treatment of B-cell lymphomas[J]. Blood, 201, 117(25):6856-6865. |
[7] |
Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346:818-822.
doi: 10.1038/346818a0 URL |
[8] |
Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase[J]. Science, 1990, 249:505-510.
pmid: 2200121 |
[9] |
Groff K, Brown J, Clippinger AJ. Modern affinity reagents:Recombinant antibodies and aptamers[J]. Biotechnology Advances, 2015, 33(8):1787-1798.
doi: 10.1016/j.biotechadv.2015.10.004 URL |
[10] |
Mercier MC, Dontenwill M, Choulier L. Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers[J]. Cancers, 2017, 9(69):1-33.
doi: 10.3390/cancers9010001 URL |
[11] |
Gaudin V. The growing interest in development of innovative optical aptasensors for the detection of antimicrobial residues in food products[J]. Biosensors, 2020, 10(3):21-29.
doi: 10.3390/bios10030021 URL |
[12] | 王子健, 陈尔凝, 杨歌, 等. 小分子靶标的核酸适配体筛选研究进展[J]. 分析化学, 2020, 48(5):24-43. |
Wang ZJ, Chen EN, Yang G, et al. Research advances of aptamers selection for small molecule targets[J]. Chinese Journal of Analytical Chemistry, 2020, 48(5):24-43. | |
[13] |
Dou H, Yan Z, Zhang M, et al. APRIL promotes non-small cell lung cancer growth and metastasis by targeting ERK1/2 signaling[J]. Oncotarget, 2017, 8(65):109289-109300.
doi: 10.18632/oncotarget.v8i65 URL |
[14] |
Lokshin A, et al. BAFF and APRIL from ActivinA-treated dendritic cells upregulate the antitumor efficacy of dendritic cells in vivo[J]. Cancer Research, 2016, 76(17):4959-4969.
doi: 10.1158/0008-5472.CAN-15-2668 URL |
[15] |
Tai Y, Lin L, et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma:therapeutic implications[J]. Leukemia, 2019, 33(2):426-438.
doi: 10.1038/s41375-018-0242-6 URL |
[16] |
Dunn MR, et al. Analysis of aptamer discovery and technology[J]. Nature Reviews Chemistry, 2017, 1(10):76-92.
doi: 10.1038/s41570-017-0076 URL |
[17] |
Lapa SA, Romashova KS, et al. Preparation of modified combinatorial DNA libraries via emulsion PCR with subsequent strand separation[J]. Molecular Biology, 2018, 52(6):854-864.
doi: 10.1134/S0026893318060110 URL |
[18] |
Qiao N, Li J, et al. Speeding up in vitro discovery of structure-switching aptamers via magnetic cross-linking precipitation[J]. Analytical Chemistry, 2019, 91(21):13383-13389.
doi: 10.1021/acs.analchem.9b00081 pmid: 31580650 |
[19] |
Pengpumkiat S, Koesdjojo M, Rowley ER, et al. Rapid synjournal of a long double-stranded oligonucleotide from a single-stranded nucleotide using magnetic beads and an oligo library[J]. PLoS One, 2016, 11(3):e0149774-0149784.
doi: 10.1371/journal.pone.0149774 URL |
[20] | 苏艺, 蒋灵丽, 林俊生. 小分子靶标与其核酸适配体亲和力的表征方法[J]. 中国生物工程杂志, 2019, 39(11):96-104. |
Su Yi, Jiang LL, Lin JS. Characterization of the affinity between low molecular weight targets and their aptamers[J]. China Biotechnology, 2019, 39(11):96-104. | |
[21] |
Gao SX, Hu B, Zheng X, et al. Study of the binding mechanism between aptamer GO18-T-d and gonyautoxin 1/4 by molecular simulation[J]. Physical Chemistry Chemical Physics Pccp, 2016, 18(34):23458-23461.
doi: 10.1039/C6CP00777E URL |
[1] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[2] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[3] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[4] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[5] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[6] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[7] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[8] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[9] | 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. |
[10] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[11] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
[12] | 张秫华, 方千, 贾红梅, 韩桂琪, 严铸云, 何冬梅. 川芎非根际、根际及根茎内生真菌群落差异分析[J]. 生物技术通报, 2021, 37(4): 56-69. |
[13] | 郭艳萍, 张浩, 赵新钢, 罗海玲, 张英俊. DNA宏条形码技术在食草动物食性研究中的应用[J]. 生物技术通报, 2021, 37(3): 252-260. |
[14] | 李叶青, 景张牧, 江皓, 徐泉, 周红军, 冯璐. 微生物组学及其在厌氧消化中的研究进展[J]. 生物技术通报, 2021, 37(1): 90-101. |
[15] | 王宏杰, 刘绍东, 刘瑞华, 张思平, 杨君, 庞朝友. 轮作对棉花根际土壤细菌群落的影响[J]. 生物技术通报, 2020, 36(9): 117-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||