生物技术通报 ›› 2021, Vol. 37 ›› Issue (10): 203-215.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1481
收稿日期:
2020-12-07
出版日期:
2021-10-26
发布日期:
2021-11-12
作者简介:
张桐,女,硕士研究生,研究方向:植物逆境生理与基因工程;E-mail: 基金资助:
ZHANG Tong(), LI Zhi-qiang, WU Guo-qiang()
Received:
2020-12-07
Published:
2021-10-26
Online:
2021-11-12
摘要:
WRKY转录因子(transcription factors,TFs)是植物中最重要的转录因子家族之一。其含有由60个氨基酸组成的保守WRKY结构域,该结构域的核心序列WRKYGQK可以与启动子区W-box[(T)(T)TGAC(C/T)]特异结合,从而调节启动子中含W-box元件的调节基因或功能基因的表达。当植物遭受逆境胁迫时,WRKY转录因子参与相关的转录重编程的调控过程,在植物生长发育、物质代谢及环境适应中具有重要作用。本文就WRKY转录因子的发现、结构特点、分类、调控、表达模式及近年来在植物响应非生物(干旱、高温、低温、高盐碱、营养缺失等)和生物(病、虫)胁迫中的作用研究进展进行综述,并对未来研究方向加以展望。
张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用[J]. 生物技术通报, 2021, 37(10): 203-215.
ZHANG Tong, LI Zhi-qiang, WU Guo-qiang. Role of WRKY Transcription Factor in Plant Response to Stresses[J]. Biotechnology Bulletin, 2021, 37(10): 203-215.
物种Species | 基因名称Gene | I类Type I | II类Type II | III类Type III | 总数Total | 参考文献Referenc |
---|---|---|---|---|---|---|
橡胶树(Hevea brasiliensis) | HbWRKYs | 16 | 51 | 14 | 81 | [7] |
甘蓝(Brassica oleracea) | BolWRKYs | 36 | 88 | 24 | 148 | [8] |
大豆(Glycine max) | GmWRKYs | 32 | 130 | 26 | 188 | [9] |
蔓花生(Arachis duranensis) | AdWRKYs | 16 | 46 | 13 | 75 | [10] |
糜子(Panicum miliaceum) | PmWRKYs | 1 | 15 | 16 | 32 | [11] |
油菜(Brassica napus) | BnaWRKYs | 121 | 158 | 51 | 343 | [5] |
簸箕柳(Salix suchowensis) | SsWRKYs | 19 | 59 | 7 | 85 | [12] |
碧桃(Prunus persica) | PpWRKYs | 10 | 40 | 8 | 58 | [13] |
辣椒(Capsicum annuum) | CaWRKYs | 15 | 41 | 10 | 71 | [14] |
木薯(Manihot esculenta) | MeWRKYs | 17 | 56 | 12 | 85 | [15] |
芝麻(Sesamum indicum) | SiWRKYs | 12 | 48 | 7 | 71 | [16] |
铁皮石斛(Dendrobium officinale) | DoWRKYs | 14 | 28 | 10 | 63 | [17] |
马铃薯(Solanum tuberosum) | StWRKYs | 13 | 52 | 14 | 79 | [18] |
苹果(Malus domestica) | MdWRKYs | 24 | 81 | 14 | 119 | [19] |
可可树(Theobroma cacao) | TcWRKYs | 10 | 40 | 8 | 61 | [20] |
毛竹(Phyllostachys edulis) | PheWRKYs | 20 | 63 | 27 | 121 | [21] |
猕猴桃(Actinidia chinensis) | AcWRKYs | 20 | 65 | 12 | 97 | [22] |
西瓜(Citrullus lanatus) | ClWRKYs | 11 | 39 | 7 | 63 | [23] |
野茶树(Camellia sinensis) | CsWRKYs | 12 | 40 | 4 | 56 | [24] |
甜根子草(Saccharum spontaneum) | SsWRKYs | 17 | 81 | 51 | 154 | [25] |
木豆(Cajanus cajan) | CcWRKYs | 15 | 63 | 14 | 97 | [26] |
甜菜(Beta vulgaris) | BvWRKYs | 11 | 40 | 7 | 58 | [27] |
月季(Rosa chinensis) | RcWRKYs | 25 | 24 | 7 | 56 | [28] |
荷花(Nelumbo nucifera) | NnWRKYs | 14 | 42 | 7 | 63 | [29] |
桂花(Osmanthus fragrans) | OfWRKYs | 29 | 105 | 20 | 154 | [30] |
胡萝卜(Daucus carota subsp) | DcsWRKYs | 6 | 53 | 8 | 67 | [31] |
辣木(Moringa oleifera) | MoWRKYs | 10 | 37 | 6 | 62 | [32] |
红梅(Prunus mume) | PmWRKYs | 10 | 40 | 8 | 58 | [33] |
檀香树(Santalum album) | SaWRKYs | 15 | 43 | 6 | 64 | [34] |
鹰嘴豆(Cicer arietinum) | CarWRKYs | 14 | 48 | 8 | 70 | [35] |
野薯(Ipomoea trifida) | ItfWRKYs | 48 | 61 | 27 | 83 | [36] |
枣树(Ziziphus jujuba) | ZjWRKYs | 10 | 40 | 11 | 61 | [37] |
藜麦(Chenopodium quinoa) | CqWRKYs | 16 | 62 | 14 | 92 | [38] |
西葫芦(Cucurbita pepo) | CmWRKYs | 18 | 65 | 12 | 95 | [39] |
珍珠粟(Pennisetum glaucum) | PgWRKYs | 9 | 47 | 29 | 97 | [40] |
甘草(Glycyrrhiza glabra) | GgWRKYs | 17 | 61 | 4 | 87 | [41] |
土沉香(Aquilaria sinensis) | AsWRKYs | 9 | 52 | 9 | 70 | [42] |
黄瓜(Cucumis sativus) | CsWRKYs | 11 | 43 | 7 | 61 | [43] |
亚麻荠(Camelina sativa) | CsWRKYs | 56 | 149 | 37 | 243 | [44] |
科民茄(Solanum commersonii) | ScWRKYs | 12 | 47 | 10 | 79 | [45] |
黄麻(Corchorus capsularis) | CcWRKYs | 9 | 28 | 6 | 43 | [46] |
海滨木槿(Hibiscus hamabo) | HhWRKY | 23 | 55 | 0 | 78 | [47] |
马尾松(Pinus massoniana) | PmWRKYs | 2 | 28 | 1 | 31 | [6] |
山茶花(camellia japonica) | CjWRKYs | 10 | 34 | 4 | 48 | [48] |
高粱(Sorghum bicolor) | SbWRKYs | 11 | 50 | 31 | 94 | [49] |
花生(Arachis hypogaea) | AhWRKYs | 33 | 98 | 27 | 158 | [50] |
茄子(Solanum melongena) | SmWRKYs | 13 | 39 | 6 | 58 | [51] |
表1 不同物种WRKY家族成员
Table 1 WRKY family members in various plant species
物种Species | 基因名称Gene | I类Type I | II类Type II | III类Type III | 总数Total | 参考文献Referenc |
---|---|---|---|---|---|---|
橡胶树(Hevea brasiliensis) | HbWRKYs | 16 | 51 | 14 | 81 | [7] |
甘蓝(Brassica oleracea) | BolWRKYs | 36 | 88 | 24 | 148 | [8] |
大豆(Glycine max) | GmWRKYs | 32 | 130 | 26 | 188 | [9] |
蔓花生(Arachis duranensis) | AdWRKYs | 16 | 46 | 13 | 75 | [10] |
糜子(Panicum miliaceum) | PmWRKYs | 1 | 15 | 16 | 32 | [11] |
油菜(Brassica napus) | BnaWRKYs | 121 | 158 | 51 | 343 | [5] |
簸箕柳(Salix suchowensis) | SsWRKYs | 19 | 59 | 7 | 85 | [12] |
碧桃(Prunus persica) | PpWRKYs | 10 | 40 | 8 | 58 | [13] |
辣椒(Capsicum annuum) | CaWRKYs | 15 | 41 | 10 | 71 | [14] |
木薯(Manihot esculenta) | MeWRKYs | 17 | 56 | 12 | 85 | [15] |
芝麻(Sesamum indicum) | SiWRKYs | 12 | 48 | 7 | 71 | [16] |
铁皮石斛(Dendrobium officinale) | DoWRKYs | 14 | 28 | 10 | 63 | [17] |
马铃薯(Solanum tuberosum) | StWRKYs | 13 | 52 | 14 | 79 | [18] |
苹果(Malus domestica) | MdWRKYs | 24 | 81 | 14 | 119 | [19] |
可可树(Theobroma cacao) | TcWRKYs | 10 | 40 | 8 | 61 | [20] |
毛竹(Phyllostachys edulis) | PheWRKYs | 20 | 63 | 27 | 121 | [21] |
猕猴桃(Actinidia chinensis) | AcWRKYs | 20 | 65 | 12 | 97 | [22] |
西瓜(Citrullus lanatus) | ClWRKYs | 11 | 39 | 7 | 63 | [23] |
野茶树(Camellia sinensis) | CsWRKYs | 12 | 40 | 4 | 56 | [24] |
甜根子草(Saccharum spontaneum) | SsWRKYs | 17 | 81 | 51 | 154 | [25] |
木豆(Cajanus cajan) | CcWRKYs | 15 | 63 | 14 | 97 | [26] |
甜菜(Beta vulgaris) | BvWRKYs | 11 | 40 | 7 | 58 | [27] |
月季(Rosa chinensis) | RcWRKYs | 25 | 24 | 7 | 56 | [28] |
荷花(Nelumbo nucifera) | NnWRKYs | 14 | 42 | 7 | 63 | [29] |
桂花(Osmanthus fragrans) | OfWRKYs | 29 | 105 | 20 | 154 | [30] |
胡萝卜(Daucus carota subsp) | DcsWRKYs | 6 | 53 | 8 | 67 | [31] |
辣木(Moringa oleifera) | MoWRKYs | 10 | 37 | 6 | 62 | [32] |
红梅(Prunus mume) | PmWRKYs | 10 | 40 | 8 | 58 | [33] |
檀香树(Santalum album) | SaWRKYs | 15 | 43 | 6 | 64 | [34] |
鹰嘴豆(Cicer arietinum) | CarWRKYs | 14 | 48 | 8 | 70 | [35] |
野薯(Ipomoea trifida) | ItfWRKYs | 48 | 61 | 27 | 83 | [36] |
枣树(Ziziphus jujuba) | ZjWRKYs | 10 | 40 | 11 | 61 | [37] |
藜麦(Chenopodium quinoa) | CqWRKYs | 16 | 62 | 14 | 92 | [38] |
西葫芦(Cucurbita pepo) | CmWRKYs | 18 | 65 | 12 | 95 | [39] |
珍珠粟(Pennisetum glaucum) | PgWRKYs | 9 | 47 | 29 | 97 | [40] |
甘草(Glycyrrhiza glabra) | GgWRKYs | 17 | 61 | 4 | 87 | [41] |
土沉香(Aquilaria sinensis) | AsWRKYs | 9 | 52 | 9 | 70 | [42] |
黄瓜(Cucumis sativus) | CsWRKYs | 11 | 43 | 7 | 61 | [43] |
亚麻荠(Camelina sativa) | CsWRKYs | 56 | 149 | 37 | 243 | [44] |
科民茄(Solanum commersonii) | ScWRKYs | 12 | 47 | 10 | 79 | [45] |
黄麻(Corchorus capsularis) | CcWRKYs | 9 | 28 | 6 | 43 | [46] |
海滨木槿(Hibiscus hamabo) | HhWRKY | 23 | 55 | 0 | 78 | [47] |
马尾松(Pinus massoniana) | PmWRKYs | 2 | 28 | 1 | 31 | [6] |
山茶花(camellia japonica) | CjWRKYs | 10 | 34 | 4 | 48 | [48] |
高粱(Sorghum bicolor) | SbWRKYs | 11 | 50 | 31 | 94 | [49] |
花生(Arachis hypogaea) | AhWRKYs | 33 | 98 | 27 | 158 | [50] |
茄子(Solanum melongena) | SmWRKYs | 13 | 39 | 6 | 58 | [51] |
[1] |
Chisholm ST, Coaker G, Day B, et al. Host-microbe interactions:shaping the evolution of the plant immune response[J]. Cell, 2006, 124(4):803-814.
pmid: 16497589 |
[2] |
Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. J Exp Bot, 2007, 58(2):221-227.
pmid: 17075077 |
[3] |
Wang GQ, Shui QZ. Effect of salinity on seed germination, seedling growth, and inorganic and organic solutes accumulationin sunflower(Helianthus annuus L.)[J]. Plant Soil Environ, 2016, 61(No. 5):220-226.
doi: 10.17221/PSE URL |
[4] |
Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Mol Gen Genet, 1994, 244(6):563-571.
doi: 10.1007/BF00282746 URL |
[5] |
He Y, Mao S, Gao Y, et al. Genome-wide identification and expression analysis of WRKY transcription factors under multiple stresses in Brassica napus[J]. PLoS One, 2016, 11(6):e0157558.
doi: 10.1371/journal.pone.0157558 URL |
[6] |
Yao S, Wu F, Hao QQ, et al. Transcriptome-wide identification of WRKY transcription factors and their expression profiles under different types of biological and abiotic stress in Pinus massoniana lamb[J]. Genes, 2020, 11(11):1386.
doi: 10.3390/genes11111386 URL |
[7] |
Li HL, Guo D, Yang ZP, et al. Genome-wide identification and characterization of WRKY gene family in Hevea brasiliensis[J]. Genomics, 2014, 104(1):14-23.
doi: 10.1016/j.ygeno.2014.04.004 URL |
[8] |
Yao QY, Xia EH, Liu FH, et al. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata[J]. Gene, 2015, 557(1):35-42.
doi: 10.1016/j.gene.2014.12.005 URL |
[9] |
Yu Y, Wang N, Hu R, et al. Genome-wide identification of soybean WRKY transcription factors in response to salt stress[J]. Springerplus, 2016, 5(1):920.
doi: 10.1186/s40064-016-2647-x URL |
[10] |
Song H, Wang P, Lin JY, et al. Genome-wide identification and characterization of WRKY gene family in peanut[J]. Front Plant Sci, 2016, 7:534.
doi: 10.3389/fpls.2016.00534 pmid: 27200012 |
[11] |
Yue H, Wang M, Liu S, et al. Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet(Panicum miliaceum L.)[J]. BMC Genomics, 2016, 17:343.
doi: 10.1186/s12864-016-2677-3 URL |
[12] |
Bi C, Xu Y, Ye Q, et al. Genome-wide identification and characterization of the MADS-box gene family in Salix suchowensis[J]. PeerJ, 2016, 4:e2437.
doi: 10.7717/peerj.2437 URL |
[13] |
Chen M, Tan Q, Sun M, et al. Genome-wide identification of WRKY family genes in peach and analysis of WRKY expression during bud dormancy[J]. Mol Genet Genomics, 2016, 291(3):1319-1332.
doi: 10.1007/s00438-016-1171-6 pmid: 26951048 |
[14] | Diao WP, Snyder JC, Wang SB, et al. Genome-wide identification and expression analysis of WRKY gene family in Capsicum annuum L[J]. Front Plant Sci, 2016, 7:211. |
[15] | Wei Y, Shi H, Xia Z, et al. Genome-wide identification and expression analysis of the WRKY gene family in cassava[J]. Front Plant Sci, 2016, 7:25. |
[16] |
Li D, Liu P, Yu J, et al. Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses[J]. BMC Plant Biol, 2017, 17(1):152.
doi: 10.1186/s12870-017-1099-y URL |
[17] |
He C, Teixeira da Silva JA, Tan J, et al. A genome-wide identification of the WRKY family genes and a survey of potential WRKY target genes in Dendrobium officinale[J]. Sci Rep, 2017, 7(1):9200.
doi: 10.1038/s41598-017-07872-8 URL |
[18] |
Zhang C, Wang D, Yang C, et al. Genome-wide identification of the potato WRKY transcription factor family[J]. PLoS One, 2017, 12(7):e0181573.
doi: 10.1371/journal.pone.0181573 URL |
[19] |
Lui S, Luo CG, Zhu LM, et al. Identification and expression analysis of WRKY transcription factor genes in response to fungal pathogen and hormone treatments in apple(Malus domestica)[J]. J Plant Biol, 2017, 60(2):215-230.
doi: 10.1007/s12374-016-0577-3 URL |
[20] |
Silva Monteiro de Almeida D, Oliveira Jordão do Amaral D, Del-Bem LE, et al. Genome-wide identification and characterization of cacao WRKY transcription factors and analysis of their expression in response to witches’ broom disease[J]. PLoS One, 2017, 12(10):e0187346.
doi: 10.1371/journal.pone.0187346 URL |
[21] |
Li L, Mu S, Cheng Z, et al. Characterization and expression analysis of the WRKY gene family in moso bamboo[J]. Sci Rep, 2017, 7(1):6675.
doi: 10.1038/s41598-017-06701-2 URL |
[22] |
Jing ZB, Liu ZD. Genome-wide identification of WRKY transcription factors in kiwifruit(Actinidia spp. )and analysis of WRKY expression in responses to biotic and abiotic stresses[J]. Genes Genom, 2018, 40(4):429-446.
doi: 10.1007/s13258-017-0645-1 URL |
[23] |
Yang XZ, Li H, Yang YC, et al. Identification and expression analyses of WRKY genes reveal their involvement in growth and abiotic stress response in watermelon(Citrullus lanatus)[J]. PLoS One, 2018, 13(1):e0191308.
doi: 10.1371/journal.pone.0191308 URL |
[24] |
Wang P, Yue C, Chen D, et al. Genome-wide identification of WRKY family genes and their response to abiotic stresses in tea plant(Camellia sinensis)[J]. Genes Genomics, 2019, 41(1):17-33.
doi: 10.1007/s13258-018-0734-9 URL |
[25] |
Li Z, Hua X, Zhong W, et al. Genome-wide identification and expression profile analysis of WRKY family genes in the autopolyploid Saccharum spontaneum[J]. Plant Cell Physiol, 2020, 61(3):616-630.
doi: 10.1093/pcp/pcz227 URL |
[26] |
Kumar G, Bajpai R, Sarkar A, et al. Identification, characterization and expression profiles of Fusarium udum stress-responsive WRKY transcription factors in Cajanus cajan under the influence of NaCl stress and Pseudomonas fluorescens OKC[J]. Sci Rep, 2019, 9(1):14344.
doi: 10.1038/s41598-019-50696-x URL |
[27] |
Wu GQ, Li ZQ, Cao H, et al. Genome-wide identification and expression analysis of the WRKY genes in sugar beet(Beta vulgaris L.)under alkaline stress[J]. PeerJ, 2019, 7:e7817.
doi: 10.7717/peerj.7817 URL |
[28] |
Liu XT, Li DD, Zhang SY, et al. Genome-wide characterization of the rose(Rosa chinensis)WRKY family and role of RcWRKY41 in gray mold resistance[J]. BMC Plant Biol, 2019, 19(1):522.
doi: 10.1186/s12870-019-2139-6 URL |
[29] |
Li J, Xiong YC, Li Y, et al. Comprehensive analysis and functional studies of WRKY transcription factors in Nelumbo nucifera[J]. Int J Mol Sci, 2019, 20(20):5006.
doi: 10.3390/ijms20205006 URL |
[30] |
Ding WJ, Ouyang QX, Li YL, et al. Genome-wide investigation of WRKY transcription factors in sweet Osmanthus and their potential regulation of aroma synjournal[J]. Tree Physiol, 2020, 40(4):557-572.
doi: 10.1093/treephys/tpz129 URL |
[31] |
Nan H, Gao LZ. Genome-wide analysis of WRKY genes and their response to hormone and mechanic stresses in carrot[J]. Front Genet, 2019, 10:363.
doi: 10.3389/fgene.2019.00363 URL |
[32] |
Zhang JJ, Yang ED, He Q, et al. Moringa oleifera genome-wide analysis of the WRKY gene family in drumstick(Lam. )[J]. PeerJ, 2019, 7:e7063.
doi: 10.7717/peerj.7063 URL |
[33] | Bao F, Ding AQ, Cheng TR, et al. Genome-wide analysis of members of the WRKY gene family and their cold stress response in Prunus mume[J]. Genes, 2019, 10(11):E911. |
[34] |
Yan HF, Li MZ, Xiong YP, et al. Genome-wide characterization, expression profile analysis of WRKY family genes in Santalum album and functional identification of their role in abiotic stress[J]. Int J Mol Sci, 2019, 20(22):5676.
doi: 10.3390/ijms20225676 URL |
[35] |
Waqas M, Azhar MT, et al. Genome-wide identification and expression analyses of WRKY transcription factor family members from chickpea(Cicer arietinum L.)reveal their role in abiotic stress-responses[J]. Genes Genom, 2019, 41(4):467-481.
doi: 10.1007/s13258-018-00780-9 URL |
[36] |
Li Y, Zhang L, Zhu P, et al. Genome-wide identification, characterisation and functional evaluation of WRKY genes in the sweet potato wild ancestor Ipomoea trifida(H. B. K. )G. Don. under abiotic stresses[J]. BMC Genet, 2019, 20(1):90.
doi: 10.1186/s12863-019-0789-x URL |
[37] | Chen X, Chen RH, Wang YF, et al. Genome-wide identification of WRKY transcription factors in Chinese jujube(Ziziphus jujuba milL.)and their involvement in fruit developing, ripening, and abiotic stress[J]. Genes, 2019, 10(5):E360. |
[38] |
Yue H, Chang X, Zhi YQ, et al. Evolution and identification of the WRKY gene family in quinoa(Chenopodium quinoa)[J]. Genes, 2019, 10(2):131.
doi: 10.3390/genes10020131 URL |
[39] |
Bankaji I, Sleimi N, et al. Identification and expression of the Cucurbita WRKY transcription factors in response to water deficit and salt stress[J]. Sci Hortic, 2019, 256:108562.
doi: 10.1016/j.scienta.2019.108562 URL |
[40] |
Chanwala J, Satpati S, Dixit A, et al. Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet(Pennisetum glaucum)under dehydration and salinity stress[J]. BMC Genomics, 2020, 21(1):231.
doi: 10.1186/s12864-020-6622-0 pmid: 32171257 |
[41] |
Goyal P, Manzoor MM, Vishwakarma RA, et al. A comprehensive transcriptome-wide identification and screening of WRKY gene family engaged in abiotic stress in Glycyrrhiza glabra[J]. Sci Rep, 2020, 10(1):373.
doi: 10.1038/s41598-019-57232-x URL |
[42] |
Xu YH, Sun PW, Tang XL, et al. Genome-wide analysis of WRKY transcription factors in Aquilaria sinensis(Lour. )Gilg[J]. Sci Rep, 2020, 10:3018.
doi: 10.1038/s41598-020-59597-w URL |
[43] |
Chen C, Chen X, Han J, et al. Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses[J]. BMC Plant Biol, 2020, 20(1):443.
doi: 10.1186/s12870-020-02625-8 URL |
[44] |
Song YN, Cui HL, et al. Genome-wide identification and functional characterization of the Camelina sativa WRKY gene family in response to abiotic stress[J]. BMC Genom, 2020, 21(1):786.
doi: 10.1186/s12864-020-07189-3 URL |
[45] |
Villano C, Esposito S, D’Amelia V, et al. WRKY genes family study reveals tissue-specific and stress-responsive TFs in wild potato species[J]. Sci Rep, 2020, 10(1):7196.
doi: 10.1038/s41598-020-63823-w pmid: 32346026 |
[46] |
Zhang L, Wan X, Xu Y, et al. De novo assembly of transcriptome and genome-wide identification reveal GA3 stress-responsive WRKY transcription factors involved in fiber formation in jute(Corchorus capsularis)[J]. BMC Plant Biol, 2020, 20(1):403.
doi: 10.1186/s12870-020-02617-8 URL |
[47] |
Wang ZQ, Ni LJ, Guo JB, et al. Phylogenetic and transcription analysis of Hibiscus hamabo sieb. et zucc. WRKY transcription factors[J]. DNA Cell Biol, 2020, 39(7):1141-1154.
doi: 10.1089/dna.2019.5254 URL |
[48] |
Yang X, Zhou Z, Fu M, et al. Transcriptome-wide identification of WRKY family genes and their expression profiling toward salicylic acid in Camellia japonica[J]. Plant Signal Behav, 2021, 16(1):1844508.
doi: 10.1080/15592324.2020.1844508 pmid: 33222651 |
[49] |
Baillo EH, Hanif MS, Guo Y, et al. Genome-wide Identification of WRKY transcription factor family members in Sorghum(Sorghum bicolor(L.)moench)[J]. PLoS One, 2020, 15(8):e0236651.
doi: 10.1371/journal.pone.0236651 URL |
[50] |
Zhao N, He M, Li L, et al. Identification and expression analysis of WRKY gene family under drought stress in peanut(Arachis hypogaea L.)[J]. PLoS One, 2020, 15(4):e0231396.
doi: 10.1371/journal.pone.0231396 URL |
[51] |
Yang Y, Liu J, Zhou XH, et al. Identification of WRKY gene family and characterization of cold stress-responsive WRKY genes in eggplant[J]. PeerJ, 2020, 8:e8777.
doi: 10.7717/peerj.8777 URL |
[52] |
Xiu H, Nuruzzaman M, et al. Molecular cloning and expression analysis of eight PgWRKY genes in Panax ginseng responsive to salt and hormones[J]. Int J Mol Sci, 2016, 17(3):319.
doi: 10.3390/ijms17030319 URL |
[53] |
Eulgem T, Rushton PJ, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.
pmid: 10785665 |
[54] |
Barco B, Clay NK. Hierarchical and dynamic regulation of defense-responsive specialized metabolism by WRKY and MYB transcription factors[J]. Front Plant Sci, 2019, 10:1775.
doi: 10.3389/fpls.2019.01775 URL |
[55] |
Lan J, Lin Q, Zhou C, et al. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice[J]. Plant Mol Biol, 2020, 104(4/5):429-450.
doi: 10.1007/s11103-020-01049-0 URL |
[56] |
Singh D, Debnath P, Roohi, et al. Expression of the tomato WRKY gene, SlWRKY23, alters root sensitivity to ethylene, auxin and JA and affects aerial architecture in transgenic Arabidopsis[J]. Physiol Mol Biol Plants, 2020, 26(6):1187-1199.
doi: 10.1007/s12298-020-00820-3 URL |
[57] |
Zhao MM, Zhang XW, Liu YW, et al. A WRKY transcription factor, TaWRKY42-B, facilitates initiation of leaf senescence by promoting jasmonic acid biosynjournal[J]. BMC Plant Biol, 2020, 20(1):1-22.
doi: 10.1186/s12870-019-2170-7 URL |
[58] |
Kang G, Yan D, Chen X, et al. HbWRKY82, a novel IIc WRKY transcription factor from Hevea brasiliensis associated with abiotic stress tolerance and leaf senescence in Arabidopsis[J]. Physiol Plant, 2021, 171(1):151-160.
doi: 10.1111/ppl.v171.1 URL |
[59] |
Cui X, Zhao P, et al. A rapeseed WRKY transcription factor phosphorylated by CPK modulates cell death and leaf senescence by regulating the expression of ROS and SA-synjournal-related genes[J]. J Agric Food Chem, 2020, 68(28):7348-7359.
doi: 10.1021/acs.jafc.0c02500 URL |
[60] |
Wang Y, Li Y, He SP, et al. A cotton(Gossypium hirsutum)WRKY transcription factor(GhWRKY22)participates in regulating anther/pollen development[J]. Plant Physiol Biochem, 2019, 141:231-239.
doi: 10.1016/j.plaphy.2019.06.005 URL |
[61] |
Huang Z, Guo HD, Liu L, et al. Heterologous expression of dehydration-inducible MfWRKY17 of Myrothamnus flabellifolia confers drought and salt tolerance in Arabidopsis[J]. Int J Mol Sci, 2020, 21(13):4603.
doi: 10.3390/ijms21134603 URL |
[62] | 苏琦, 尚宇航, 等. 植物WRKY转录因子研究进展[J]. 中国农学通报, 2007, 23(5):94-98. |
Su Q, Shang YH, et al. Progress on plant WRKY transcription factor[J]. Chin Agric Sci Bull, 2007, 23(5):94-98. | |
[63] |
Jiang Y, Duan Y, Yin J, et al. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses[J]. J Exp Bot, 2014, 65(22):6629-6644.
doi: 10.1093/jxb/eru381 URL |
[64] |
Zhu H, Zhou YY, Zhai H, et al. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis[J]. Biomolecules, 2020, 10(4):506.
doi: 10.3390/biom10040506 URL |
[65] |
Wang MQ, Huang QX, Lin P, et al. The overexpression of a transcription factor gene VbWRKY32 enhances the cold tolerance in Verbena bonariensis[J]. Front Plant Sci, 2019, 10:1746.
doi: 10.3389/fpls.2019.01746 URL |
[66] |
Li HL, Qu L, Guo D, et al. Histone deacetylase interacts with a WRKY transcription factor to regulate the expression of the small rubber particle protein gene from Hevea brasiliensis[J]. Ind Crop Prod, 2020, 145:111989.
doi: 10.1016/j.indcrop.2019.111989 URL |
[67] |
Rushton PJ, Somssich IE, Ringler P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.
doi: 10.1016/j.tplants.2010.02.006 pmid: 20304701 |
[68] |
Ma Q, Xia Z, Cai Z, et al. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana[J]. Front Plant Sci, 2018, 9:1979.
doi: 10.3389/fpls.2018.01979 URL |
[69] |
Wei W, Liang DW, Bian XH, et al. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean[J]. Plant J, 2019, 100(2):384-398.
doi: 10.1111/tpj.14449 |
[70] | Jiang Y, Qiu Y, Hu Y, et al. Heterologous expression of AtWRKY57 confers drought tolerance in Oryza sativa[J]. Front Plant Sci, 2016, 7:145. |
[71] |
Jaffar M, Song AP, Faheem M, et al. Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway[J]. Int J Mol Sci, 2016, 17(5):693.
doi: 10.3390/ijms17050693 URL |
[72] |
Ahammed GJ, Li X, Yang YX, et al. Tomato WRKY81 acts as a negative regulator for drought tolerance by modulating guard cell H2O2-mediated stomatal closure[J]. Environ Exp Bot, 2020, 171:103960.
doi: 10.1016/j.envexpbot.2019.103960 URL |
[73] | Liu Y, Yang T, Lin Z, et al. A WRKY transcription factor PbrWRKY53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation[J]. Plant Biotechnol J, 2019, 17(9):1770-1787. |
[74] |
Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol, 2008, 59:651-681.
doi: 10.1146/annurev.arplant.59.032607.092911 pmid: 18444910 |
[75] |
Xu Z, Raza Q, Xu L, et al. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Front Plant Sci, 2018, 9:809.
doi: 10.3389/fpls.2018.00809 URL |
[76] |
Wang K, Wu YH, Tian XQ, et al. Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings[J]. Front Plant Sci, 2017, 8:1592.
doi: 10.3389/fpls.2017.01592 pmid: 28959270 |
[77] |
Li P, Song A, Gao C, et al. Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic Chrysanthemum and Arabidopsis plants[J]. Plant Cell Rep, 2015, 34(8):1365-1378.
doi: 10.1007/s00299-015-1793-x URL |
[78] |
Zhu D, Hou LX, Xiao PL, et al. VvWRKY30, a grape WRKY transcription factor, plays a positive regulatory role under salinity stress[J]. Plant Sci, 2019, 280:132-142.
doi: 10.1016/j.plantsci.2018.03.018 URL |
[79] |
Zhou L, Wang NN, Gong SY, et al. Overexpression of a cotton(Gossypium hirsutum)WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants[J]. Plant Physiol Biochem, 2015, 96:311-320.
doi: 10.1016/j.plaphy.2015.08.016 URL |
[80] |
Lv B, Wu Q, Wang A, et al. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Physiol Biochem, 2020, 147:43-53.
doi: 10.1016/j.plaphy.2019.12.004 URL |
[81] |
Dong Q, Zheng W, Duan D, et al. MdWRKY30, a group IIa WRKY gene from apple, confers tolerance to salinity and osmotic stresses in transgenic apple callus and Arabidopsis seedlings[J]. Plant Sci, 2020, 299:110611.
doi: 10.1016/j.plantsci.2020.110611 URL |
[82] |
El-Esawi MA, Al-Ghamdi AA, et al. Overexpression of AtWRKY30 transcription factor enhances heat and drought stress tolerance in wheat(Triticum aestivum L.)[J]. Genes, 2019, 10(2):163.
doi: 10.3390/genes10020163 URL |
[83] |
He GH, Xu JY, Wang YX, et al. Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis[J]. BMC Plant Biol, 2016, 16(1):116.
doi: 10.1186/s12870-016-0806-4 URL |
[84] |
Li S, Fu Q, Huang W, et al. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress[J]. Plant Cell Rep, 2009, 28(4):683-693.
doi: 10.1007/s00299-008-0666-y URL |
[85] |
Li SJ, Fu QT, Chen LG, et al. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance[J]. Planta, 2011, 233(6):1237-1252.
doi: 10.1007/s00425-011-1375-2 URL |
[86] |
Kim CY, Vo KTX, Nguyen CD, et al. Functional analysis of a cold-responsive rice WRKY gene, OsWRKY71[J]. Plant Biotechnol Rep, 2016, 10(1):13-23.
doi: 10.1007/s11816-015-0383-2 URL |
[87] |
Yokotani N, Sato Y, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. J Exp Bot, 2013, 64(16):5085-5097.
doi: 10.1093/jxb/ert298 pmid: 24043853 |
[88] | Martin MH, Marschner H. The mineral nutrition of higher plants[J]. J Ecol, 1988, 76(4):1250. |
[89] |
Xu L, Jin L, Long L, et al. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis[J]. Plant Cell Rep, 2012, 31(12):2177-2188.
doi: 10.1007/s00299-012-1328-7 URL |
[90] |
Dai X, Wang Y, Zhang WH. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice[J]. J Exp Bot, 2016, 67(3):947-960.
doi: 10.1093/jxb/erv515 URL |
[91] |
Wang H, Xu Q, Kong YH, et al. Arabidopsis WRKY45 transcription factor activates phosphate transporter1;1 expression in response to phosphate starvation[J]. Plant Physiol, 2014, 164(4):2020-2029.
doi: 10.1104/pp.113.235077 pmid: 24586044 |
[92] |
Wu TY, Krishnamoorthi S, et al. Crosstalk between heterotrimeric G protein-coupled signaling pathways and WRKY transcription factors modulating plant responses to suboptimal micronutrient conditions[J]. J Exp Bot, 2020, 71(10):3227-3239.
doi: 10.1093/jxb/eraa108 URL |
[93] |
Gao K, Zhou T, Hua Y, et al. Transcription factor WRKY23 is involved in ammonium-induced repression of Arabidopsis primary root growth under ammonium toxicity[J]. Plant Physiol Biochem, 2020, 150:90-98.
doi: 10.1016/j.plaphy.2020.02.034 URL |
[94] |
Chun XL, Jing YY, Jiang YR, et al. A WRKY transcription factor confers aluminum tolerance via regulation of cell wall modifying genes[J]. J Integr Plant Biol, 2020, 62(8):1176-1192.
doi: 10.1111/jipb.v62.8 URL |
[95] |
Li GZ, Wang ZQ, Yokosho K, et al. Transcription factor WRKY22 promotes aluminum tolerance via activation of OsFRDL4 expression and enhancement of citrate secretion in rice(Oryza sativa)[J]. New Phytol, 2018, 219(1):149-162.
doi: 10.1111/nph.2018.219.issue-1 URL |
[96] |
Ye J, Wang X, Hu TX, et al. An InDel in the promoter of alactivated malate transporter9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. Plant Cell, 2017, 29(9):2249-2268.
doi: 10.1105/tpc.17.00211 URL |
[97] |
Sheng Y, Yan X, Huang Y, et al. The WRKY transcription factor, WRKY13, activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell Environ, 2019, 42(3):891-903.
doi: 10.1111/pce.v42.3 URL |
[98] |
Kang GJ, Yan D, Chen XL, et al. Molecular characterization and functional analysis of a novel WRKY transcription factor HbWRKY83 possibly involved in rubber production of Hevea brasiliensis[J]. Plant Physiol Biochem, 2020, 155:483-493.
doi: 10.1016/j.plaphy.2020.08.013 URL |
[99] |
Bi M, Li X, Yan X, et al. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway[J]. Hortic Res, 2021, 8(1):6.
doi: 10.1038/s41438-020-00436-4 URL |
[100] |
Zhang F, Wang F, Yang S, et al. MdWRKY100 encodes a group I WRKY transcription factor in Malus domestica that positively regulates resistance to Colletotrichum gloeosporioides infection[J]. Plant Sci, 2019, 286:68-77.
doi: S0168-9452(19)30063-9 pmid: 31300143 |
[101] |
Dang F, Wang Y, She J, et al. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection[J]. Physiol Plant, 2014, 150(3):397-411.
doi: 10.1111/ppl.2014.150.issue-3 URL |
[102] |
Wang X, Li JJ, Guo J, et al. The WRKY transcription factor PlWRKY65 enhances the resistance of Paeonia lactiflora(herbaceous peony)to Alternaria tenuissima[J]. Hortic Res, 2020, 7:57.
doi: 10.1038/s41438-020-0267-7 URL |
[103] |
Cui XX, Yan Q, Gan SP, et al. GmWRKY40, a member of the WRKY transcription factor genes identified from Glycine max L., enhanced the resistance to Phytophthora sojae[J]. BMC Plant Biol, 2019, 19(1):598.
doi: 10.1186/s12870-019-2132-0 URL |
[104] |
Han X, Zhang L, Zhao L, et al. SnRK1 phosphorylates and destabilizes WRKY3 to enhance barley immunity to powdery mildew[J]. Plant Commun, 2020, 1(4):100083.
doi: 10.1016/j.xplc.2020.100083 URL |
[105] |
Zheng Z, Mosher SL, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biol, 2007, 7:2.
pmid: 17214894 |
[106] |
Kim KC, Lai Z, Fan B, et al. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense[J]. Plant Cell, 2008, 20(9):2357-2371.
doi: 10.1105/tpc.107.055566 URL |
[107] |
de Vos M, Kim JH, Jander G. Biochemistry and molecular biology of Arabidopsis-aphid interactions[J]. Bioessays, 2007, 29(9):871-883.
doi: 10.1002/(ISSN)1521-1878 URL |
[108] |
Grunewald W, Karimi M, Wieczorek K, et al. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes[J]. Plant Physiol, 2008, 148(1):358-368.
doi: 10.1104/pp.108.119131 pmid: 18599655 |
[109] |
Skibbe M, Qu N, Galis I, et al. Induced plant defenses in the natural environment:Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory[J]. Plant Cell, 2008, 20(7):1984-2000.
doi: 10.1105/tpc.108.058594 URL |
[110] |
Atamian HS, Eulgem T, Kaloshian I. SlWRKY70 is required for Mi-1-mediated resistance to aphids and nematodes in tomato[J]. Planta, 2012, 235(2):299-309.
doi: 10.1007/s00425-011-1509-6 pmid: 21898085 |
[111] |
Kloth KJ, Wiegers GL, Busscher-Lange J, et al. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling[J]. J Exp Bot, 2016, 67(11):3383-3396.
doi: 10.1093/jxb/erw159 URL |
[112] |
Yin M, Song N, Chen S, et al. NaKTI2, a Kunitz trypsin inhibitor transcriptionally regulated by NaWRKY3 and NaWRKY6, is required for herbivore resistance in Nicotiana attenuata[J]. Plant Cell Rep, 2021, 40(1):97-109.
doi: 10.1007/s00299-020-02616-x URL |
[113] | Amato A, Cavallini E, Zenoni S, et al. A grapevine TTG2-like WRKY transcription factor is involved in regulating vacuolar transport and flavonoid biosynjournal[J]. Front Plant Sci, 2016, 7:1979. |
[114] |
Zhou C, Lin Q, Lan J, et al. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response[J]. Front Plant Sci, 2020, 11:691.
doi: 10.3389/fpls.2020.00691 URL |
[115] |
Yang Y, Wang N, Zhao SJ. Functional characterization of a WRKY family gene involved in somatic embryogenesis in Panax ginseng[J]. Protoplasma, 2020, 257(2):449-458.
doi: 10.1007/s00709-019-01455-2 pmid: 31760482 |
[116] | Huang RW, Liu DF, Huang M, et al. CpWRKY71, a WRKY transcription factor gene of wintersweet(Chimonanthus praecox), promotes flowering and leaf senescence in Arabidopsis[J]. Int J Mol Sci, 2019, 20(21):E5325. |
[117] |
Hu JF, Fang HC, Wang J, et al. Ultraviolet B-induced MdWRKY72 expression promotes anthocyanin synjournal in apple[J]. Plant Sci, 2020, 292:110377.
doi: 10.1016/j.plantsci.2019.110377 URL |
[118] |
Qu L, Li HL, Guo D, et al. HbWRKY27, a group IIe WRKY transcription factor, positively regulates HbFPS1 expression in Hevea brasiliensis[J]. Sci Rep, 2020, 10(1):1-8.
doi: 10.1038/s41598-019-56847-4 URL |
[119] |
Xiao Y, Feng J, Li Q, et al. IiWRKY34 positively regulates yield, lignan biosynjournal and stress tolerance in Isatis indigotica[J]. Acta Pharm Sin B, 2020, 10(12):2417-2432.
doi: 10.1016/j.apsb.2019.12.020 URL |
[120] |
Hao X, Xie C, Ruan Q, et al. The transcription factor OpWRKY2 positively regulates the biosynjournal of the anticancer drug camptothecin in Ophiorrhiza pumila[J]. Hortic Res, 2021, 8(1):7.
doi: 10.1038/s41438-020-00437-3 URL |
[121] |
Wang D, Jiang C, Liu W, et al. The WRKY53 transcription factor enhances stilbene synjournal and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape[J]. J Exp Bot, 2020, 71(10):3211-3226.
doi: 10.1093/jxb/eraa097 pmid: 32080737 |
[122] |
Li XY, He L, An XH, et al. VviWRKY40, a WRKY transcription factor, regulates glycosylated monoterpenoid production by VviGT14 in grape berry[J]. Genes, 2020, 11(5):485.
doi: 10.3390/genes11050485 URL |
[123] |
Yao L, Wang J, Sun JC, et al. A WRKY transcription factor, PgWRKY4X, positively regulates ginsenoside biosynjournal by activating squalene epoxidase transcription in Panax ginseng[J]. Ind Crop Prod, 2020, 154:112671.
doi: 10.1016/j.indcrop.2020.112671 URL |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[13] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[14] | 周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
[15] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||