生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 113-123.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0071
收稿日期:
2020-01-18
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
余琴,女,硕士研究生,研究方向:微生物学;E-mail: 基金资助:
YU Qin1(), MA Xian-yong2, DENG Dun2(), WANG Yong-fei1()
Received:
2020-01-18
Published:
2021-12-26
Online:
2022-01-19
摘要:
在前期的研究中发现了一株吲哚高效降解菌IDO5,本研究主要对其降解猪粪废水吲哚的性质进行了测定。首先通过形态学和16S rRNA序列分析,并初步分析了IDO5对吲哚的降解效果和可作用的底物类型。其次比较了转速、温度、pH、碳源等因素对IDO5降解猪粪废水中吲哚的影响。最后利用GC-MS分析IDO5降解吲哚的产物结构和降解途径。结果表明,IDO5不仅能够利用吲哚为碳源生长,而且能够降解3-甲基吲哚、苯酚、甲酚等多种污染物,具有广泛的底物谱。菌株IDO5降解猪粪吲哚最适的条件为:温度37oC,转速170 r/min,pH 9,在此条件下24 h内可降解猪粪废水中98.2%的吲哚,去除效率较高。甚至在额外添加100 mg/L吲哚的情况下,IDO5依然能够以93.7%的高降解率去除吲哚。IDO5在降解吲哚过程中形成红色的产物,通过GC-MS分析,菌株IDO5降解吲哚很可能是通过吲哚→靛红→邻氨基苯甲酸→邻甲基苯甲醛途径。本研究表明,菌株IDO5不仅具有较强的吲哚降解能力,而且还能作用多种吲哚类化合物,对pH适应能力也较强,能够在广泛的条件下对畜禽养殖废水中的吲哚进行有效降解,具备一定应用价值。
余琴, 马现永, 邓盾, 王永飞. 海氏肠球菌IDO5对猪粪废水中吲哚降解条件优化及降解途径分析[J]. 生物技术通报, 2021, 37(12): 113-123.
YU Qin, MA Xian-yong, DENG Dun, WANG Yong-fei. Optimization of Indole-degrading Conditions in Pig Manure Waste Water by Enteroccus hirae IDO5 and Analysis of Its Corresponding Degradation Pathway[J]. Biotechnology Bulletin, 2021, 37(12): 113-123.
图1 IDO5形态学特征 A:IDO5菌株平板菌落;B:菌株IDO5扫描电镜镜检结果
Fig. 1 Morphological characteristics of IDO5 A:Plate colony of IDO5 strain;B:scanning electron microscopy result of strain IDO5
图2 IDO5-16S rRNA系统发育树 基于IDO5的16S rRNA基因序列建立的系统发育邻接树。系统发育树显示了各个分离株和各自属内物种之间的关系。引导节点上给出的值(以1 000次复制的百分比表示)大于50%。序列变异尺度值为0.05%。GenBank登录号在括号中给出
Fig. 2 Phylogenetic tree based on 16S rRNA sequence of IDO5 Phylogenetic neighbor joining tree of IDO5 is constructed based on 16S rRNA gene sequences. The phylogenetic tree shows the relationships between individual isolates and species within the respective genus. Bootstrap values(expressed as percentages of 1 000 replications)given at nodes are > 50%. Bar 0.05% sequence variation. GenBank accession numbers are given in parentheses
图4 温度对IDO5降解猪粪废水中吲哚的影响 误差线表示标准差,不同字母表示处理之间差异显著(P < 0.05)。下同
Fig. 4 Effects of temperature on the degradation of indole in pig anure wastewater by IDO5 Error bars indicate the standard deviation and different letters reflect significant difference(P< 0.05)between treatments. The same below
菌株名称 Strain name | 降解特性 Degradation characteristics | 参考文献 Reference |
---|---|---|
Pseudomonas aeruginosaGs | 36 d时降解58.5-175 mg/L吲哚 58.5-175 mg/L indole was degraded after 36 d | [25] |
Comamonas sp. IDO1 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Xenophilus sp. IDO4 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Arthrobacter sp. B1 | 40 h降解117 mg/L吲哚 117 mg/L indole was degraded after 40 h | [27] |
Arthrobacter sp. SPG | 36 h降解58.5 mg/L吲哚 58.5 mg/L indole was degraded after 46 h | [28] |
Providencia sp. | 28 h降解100 mg/L吲哚 100 mg/L indole was degraded after 28 h | [29] |
Cupriavidus sp. SHE | 24 h降解100 mg/L吲哚 100 mg/L indole was degraded after 24 h | [23] |
表3 吲哚降解菌资源
Table 3 Resources of indole degrading bacteria
菌株名称 Strain name | 降解特性 Degradation characteristics | 参考文献 Reference |
---|---|---|
Pseudomonas aeruginosaGs | 36 d时降解58.5-175 mg/L吲哚 58.5-175 mg/L indole was degraded after 36 d | [25] |
Comamonas sp. IDO1 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Xenophilus sp. IDO4 | 至少需要160 h降解100 mg/L吲哚 100 mg/L indole was degraded after at least 160 h | [26] |
Arthrobacter sp. B1 | 40 h降解117 mg/L吲哚 117 mg/L indole was degraded after 40 h | [27] |
Arthrobacter sp. SPG | 36 h降解58.5 mg/L吲哚 58.5 mg/L indole was degraded after 46 h | [28] |
Providencia sp. | 28 h降解100 mg/L吲哚 100 mg/L indole was degraded after 28 h | [29] |
Cupriavidus sp. SHE | 24 h降解100 mg/L吲哚 100 mg/L indole was degraded after 24 h | [23] |
[1] |
Huang M, Kaliaguine S. Dehydration of monoethanolamine over alkali-exchanged zeolites[J]. Reaction Kinetics and Catalysis Letters, 1995, 56(1):21-36.
doi: 10.1007/BF02066947 URL |
[2] |
Mackie RI, Stroot PG, Varel VH. Biochemical identification and biological origin of key odor components in livestock waste[J]. Journal of Animal Science, 1998, 76(5):1331-1342.
pmid: 9621939 |
[3] |
Yanni AS. Synjournal of some new bisindole derivatives and their biological activity[J]. International Journal of Organic Chemistry, 2016, 6(4):187-191.
doi: 10.4236/ijoc.2016.64019 URL |
[4] |
Karchava AV, Melkonyan FS, Yurovskaya MA. New strategies for the synjournal of N-alkylated indoles(Review)[J]. Chemistry of Heterocyclic Compounds, 2012, 48(3):391-407.
doi: 10.1007/s10593-012-1006-2 URL |
[5] |
杨扬, 高克祥, 吴岩, 等. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8):14-21.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.08.003 |
Yang Y, Gao KX, Wu Y, et al. Indoleacetic acid cross-border signal regulates plant bacterial interaction[J]. Biotechnology Bulletin, 2016, 32(8):14-21. | |
[6] | Wang Y, Wan Z, Jia C, et al. Indole-based organic dyes with different electron donors for dye-sensitized solar cells[J]. Synthetic Metals, 2016, 657:46-55. |
[7] |
Song GX, Zhu CY, Hu YM, et al. Determination of organic pollutant in coking wastewater by dispersive liquid-liquid microextraction/GC/MS[J]. Journal of Separation Science, 2013, 36(9-10):1644-1651.
doi: 10.1002/jssc.201201151 URL |
[8] | 于洋洋, 王广智, 陈睿, 等. 吲哚好氧降解污泥的强化培养特性与降解效能研究[J]. 环境工程, 2018, 36(5):61-67. |
Yu YY, Wang GZ, Chen R, et al. Study on enhanced culture characteristics and degradation efficiency of indole aerobic degradation sludge[J]. Environmental Engineering, 2018, 36(5):61-67. | |
[9] |
Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule[J]. Trend in Microbiology, 2015, 23(11):707-718.
doi: 10.1016/j.tim.2015.08.001 URL |
[10] | 吴浩玮, 孙小淇, 梁博文, 等. 我国畜禽粪便污染现状及处理与资源化利用分析[J]. 农业环境科学学报, 2020, 298(6):14-22. |
Wu HW, Sun XQ, Liang BW, et al. Analysis on the current situation of livestock manure pollution and its treatment and resource utilization in China[J]. Journal of Agricultural Environmental Science, 2020, 298(6):14-22. | |
[11] |
Saatkamp HW, Mourits MCM, Howe KS. A framework for categorization of the economic impacts of outbreaks of highly contagious livestock diseases[J]. Transboundary and Emerging Diseases, 2016, 63(4):422-434.
doi: 10.1111/tbed.12286 pmid: 25382248 |
[12] |
Ahmadi M, Vahabzadeh F, Bonakdarpour B, Mofarrah E, Mehranian M. Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation[J]. Journal of Hazardous Materials, 2005, 123(1/3):187-195.
doi: 10.1016/j.jhazmat.2005.03.042 URL |
[13] | Mcdermott JA, Hughes DH, Quinlin PM. Alkyl ethoxy sulfates. Absorption, distribution, excretion, and metabolite identification studies in rats and man[J]. Toxicology and Applied Pharmacology, 1975, 33(1):58. |
[14] |
Jansson FT. Mutagenicity of some indoles and related compounds in the Ames test[J]. Toxicology, 1982, 23(1):1-10.
doi: 10.1016/0300-483X(82)90036-1 URL |
[15] |
Hammond AC, Carlson JR, Breeze RG. Indole toxicity in cattle[J]. Veterinary Record, 1980, 107(15):344-346.
pmid: 7210436 |
[16] |
Sun H, Zheng M, Song J, et al. Multiple-species hormetic phenomena induced by indole:A case study on the toxicity of indole to bacteria, algae and human cells[J]. Science of the Total Environment, 2019, 657:46-55.
doi: 10.1016/j.scitotenv.2018.12.006 URL |
[17] | 杨冰玉, 林宇星, 戴春晓, 等. Alcaligenes sp. YBY降解吲哚的特性研究[J]. 环境科学与技术, 2018, 41(12):1-6. |
Yang BY, Lin YX, Dai CX, et al. Characteristics of indole degradation by Alcaligenes sp. YBY[J]. Environmental Science and Technology, 2018, 41(12):1-6. | |
[18] |
Yong YC, Zhong JJ. Recent advances in biodegradation in China:New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation[J]. Process Biochemistry, 2010, 45(12):1937-1943.
doi: 10.1016/j.procbio.2010.04.009 URL |
[19] |
Liu X, Xue P, Jia F, et al. A novel approach to efficient degradation of indole using co-immobilized horseradish peroxidase-syringaldehyde as biocatalyst[J]. Chemosphere, 2021, 262:128411.
doi: 10.1016/j.chemosphere.2020.128411 URL |
[20] | 刘紫嫣. Burkholderia sp. IDO3及其功能基因转化吲哚研究[D]. 大连:大连理工大学, 2017. |
Liu ZY. Burkholderia sp. IDO3[D]. Dalian:Dalian University of Technology, 2017. | |
[21] | Giles RL, Zackeru JC, Elliott GD, ParrowMW. Fungal growth necessary but not sufficient for effective biopulping of wood for lignocellulosic ethanol applications[J]. International Biodeterioration & Biodegradation, 2012, 67:1-7. |
[22] | Sadauskas M, Vaitekūnas J, Gasparavičiūtė R, et al. Indole biodegradation in Acinetobacter sp. strain O153:genetic and biochemical characterization[J]. Applied and Environmental Microbiology, 2017, 83(19):e01453-17. |
[23] |
Qu YY, Shen E, Ma Q, et al. Biodegradation of indole by anewly isolated Cupriavidus sp. SHE[J]. Journal of Environmental Sciences, 2015, 34(8):126-132.
doi: 10.1016/j.jes.2015.01.023 URL |
[24] | 邵栓, 常娟, 王平, 等. 复合微生物制剂的研制及对猪粪便中吲哚的降解作用[J]. 畜牧与兽医, 2019(8):30-36. |
Shao S, Chang J, Wang P, et al. Preparation of compound microbial preparation and its degradation of indole in pig feces[J]. Animal Husbandry and Veterinary, 2019(8):30-36. | |
[25] | Yin B, Gu JD, Wan N. Degradation of indole by enrichment culture and Pseudomonas aeruginosa Gs isolated from mangrove sediment[J]. International Biodeterioration& Biodegradation, 2005, 56(4):243-248. |
[26] |
Ma Q, Qu Y, Zhang X, et al. Systematic investigation and microbial community profile of indole degradation processes in two aerobic activated sludge systems[J]. Scientific Reports, 2015, 5(1):17674.
doi: 10.1038/srep17674 URL |
[27] |
Kim M, Lee JH, Kim E, et al. Isolation ofindole utilizing bacteria Arthrobacter sp. and Alcaligenes sp. from livestock waste[J]. Indian Journal of Microbiology, 2016, 56(2):158-166.
doi: 10.1007/s12088-016-0570-z URL |
[28] | Arora PK, Bae H. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography[J]. International Journal of Analytical Chemistry, 2014, 2014:239641. |
[29] | 戴春晓, 杨婧, 房皓, 等. 一株新颖的Providencia sp. 菌降解吲哚及合成靛蓝的特性研究[J]. 环境科学学报, 2018, 38(9):3590-3596. |
Dai CX, Yang J, Fang H, et al. Degradation characteristics of indole and biosynjournal of indigo by a novel bacteria Providencia sp.[J]. Acta Scientiae Circumstantiae, 2018, 38(9):3590-3596. | |
[30] |
Ma Q, Zhang X, Qu Y. Biodegradation and biotransformation of indole:advances and perspectives[J]. Frontiers in Microbiology, 2018, 9:2625.
doi: 10.3389/fmicb.2018.02625 URL |
[1] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[2] | 穆德添, 万凌云, 章瑶, 韦树根, 陆英, 付金娥, 田艺, 潘丽梅, 唐其. 钩藤管家基因筛选及生物碱合成相关基因的表达分析[J]. 生物技术通报, 2023, 39(2): 126-138. |
[3] | 杜佳慧, 徐伟芳, 杨晓冬, 谭松, 尹登科, 刘园旭. 多花黄精产吲哚乙酸内生菌的分离筛选及其对黄精种子萌发的影响[J]. 生物技术通报, 2022, 38(12): 223-232. |
[4] | 李培根, 要雅倩, 宋吉祥, 王天琪, 周波, 王冰, 林榕姗. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020, 36(9): 109-116. |
[5] | 万水霞, 王静, 李帆, 蒋光月, 徐文静, 刘祚军. 玉米根际高效溶磷菌的筛选、鉴定及促生效应研究[J]. 生物技术通报, 2020, 36(5): 98-103. |
[6] | 郑伟, 周涛, 江维克, 李军, 肖承鸿, 杨昌贵, 张晨, 龚安慧, 韦德群, 毕艳. 外源PBZ和GA3对太子参发育过程内源IAA积累及其相关基因表达的影响[J]. 生物技术通报, 2019, 35(2): 46-52. |
[7] | 麻金金, 葛蓓孛, 施李鸣, 刘炳花, 韦秋合, 张克诚. 玫瑰黄链霉菌NKZ-259发酵培养基的优化[J]. 生物技术通报, 2019, 35(2): 85-92. |
[8] | 张伊丽, 刘照平, 陆敏依, 蔡明勇, 吴根鹏. CO2分压对贴壁细胞MRC-5连续传代培养的影响[J]. 生物技术通报, 2019, 35(10): 169-173. |
[9] | 杨扬, 高克祥, 吴岩, 刘晓光. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8): 14-21. |
[10] | 芦光新, 陈秀蓉, 王军邦, 吴楚. 一株筛选自高寒草地木聚糖酶产生真菌的鉴定及酶学特性研究[J]. 生物技术通报, 2014, 0(5): 162-178. |
[11] | 葛春辉, 孟阿静, 马彦茹, 杨新华, 王新勇, 孙九胜. 一株黄瓜根际促生菌的筛选、鉴定及其发酵特性[J]. 生物技术通报, 2014, 0(3): 94-99. |
[12] | 朱遐;. 针叶树微繁殖体发根[J]. , 1990, 0(09): 5-6. |
[13] | . 体外培养和遗传育种[J]. , 1989, 0(02): 59-66. |
[14] | 马亚敏;. 突变根瘤菌能成倍提高固氮能力[J]. , 1986, 0(04): 9-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||