生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 274-284.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1139
刘佳1,2(), 魏佳奇2(), 刘玉琴3, 时歌歌2, 郭静2
收稿日期:
2020-09-07
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
刘佳,女,博士,副教授,研究方向:技术创新管理、数据挖掘、科技评估、知识产权管理;E-mail: 基金资助:
LIU Jia1,2(), WEI Jia-qi2(), LIU Yu-qin3, SHI Ge-ge2, GUO Jing2
Received:
2020-09-07
Published:
2021-12-26
Online:
2022-01-19
摘要:
基因编辑在农业、工业以及生物医学领域都表现出了巨大的应用价值,研究其演化趋势和演化规律对相关决策者制定技术战略具有重要意义。基于德温特专利数据库,对基因编辑技术的研究进展做了整体分析,通过对基因编辑技术的专利申请态势、国家地区分布、主要专利权人和核心技术主题进行分析来揭示该技术的演化过程。结果表明,(1)从专利申请趋势来看,目前基因编辑技术正处于高速发展阶段;(2)发达国家的专利申请数量依然处于优势地位,而中国地区在保护专利知识产权方面作用明显,吸引了众多高质量的专利;(3)与国外专利权人相比,我国专利权人的综合实力进步显著,但仍缺乏与企业的直接联系;(4)基因编辑的发展方向主要受社会需求影响,通过优化技术降低潜在风险是今后发展的重要目标。
刘佳, 魏佳奇, 刘玉琴, 时歌歌, 郭静. 基于专利分析和社会网络分析的基因编辑技术演化研究[J]. 生物技术通报, 2021, 37(12): 274-284.
LIU Jia, WEI Jia-qi, LIU Yu-qin, SHI Ge-ge, GUO Jing. Research on Evolution of Gene Editing Technology Based on Patent Analysis and Social Network Analysis[J]. Biotechnology Bulletin, 2021, 37(12): 274-284.
专利权人 Patentee | 专利总数 Total number of patents | Degree | Betweennees | 所属国家 Country | 涉及年份 Year | 近3年专利占比 Proportion of patents in the past three years/% |
---|---|---|---|---|---|---|
麻省理工学院 | 133 | 0.210 5 | 0.105 3 | USA | 1995-2019 | 52.6 |
哈佛大学 | 113 | 0.210 5 | 0.105 3 | USA | 1990-2019 | 63.7 |
加州大学 | 107 | 0.315 8 | 0.251 5 | USA | 1996-2019 | 61.7 |
Broad研究所 | 95 | 0.210 5 | 0.097 5 | USA | 2012-2019 | 61.1 |
先锋国际良种公司 | 77 | 0.052 6 | 0.070 2 | USA | 1991-2019 | 57.1 |
Cellectis公司 | 70 | 0 | 0 | France | 2002-2019 | 20.0 |
江南大学 | 66 | 0 | 0 | China | 2006-2019 | 57.6 |
上海交通大学 | 62 | 0 | 0 | China | 2003-2019 | 45.2 |
天津科技大学 | 43 | 0 | 0 | China | 2008-2019 | 74.4 |
Sangamo公司 | 42 | 0.052 6 | 0.070 2 | USA | 2000-2019 | 23.8 |
CRISPR Therapeutics AG | 40 | 0 | 0 | Switzerland | 2016-2019 | 92.5 |
芜湖英特菲尔生物制品产业研究院 | 40 | 0 | 0 | China | 2017-2018 | 100 |
Editas Medicine公司 | 38 | 0 | 0 | USA | 2015-2019 | 94.7 |
宾夕法尼亚大学 | 36 | 0.052 6 | 0.070 2 | USA | 1997-2019 | 80.6 |
GEN HOSPITAL CORP | 36 | 0.157 9 | 0.093 6 | Netherlands | 2006-2019 | 69.4 |
中国科学院上海生命科学研究院 | 36 | 0 | 0 | China | 2010-2019 | 72.2 |
浙江大学 | 35 | 0 | 0 | China | 2003-2019 | 65.7 |
孟山都公司 | 34 | 0 | 0 | USA | 1999-2019 | 47.1 |
美国卫生与公众服务部 | 33 | 0.210 5 | 0.074 1 | USA | 1993-2019 | 36.4 |
华中农业大学 | 33 | 0 | 0 | China | 2004-2019 | 75.8 |
表1 主要专利权人信息
Table 1 Main patentee information
专利权人 Patentee | 专利总数 Total number of patents | Degree | Betweennees | 所属国家 Country | 涉及年份 Year | 近3年专利占比 Proportion of patents in the past three years/% |
---|---|---|---|---|---|---|
麻省理工学院 | 133 | 0.210 5 | 0.105 3 | USA | 1995-2019 | 52.6 |
哈佛大学 | 113 | 0.210 5 | 0.105 3 | USA | 1990-2019 | 63.7 |
加州大学 | 107 | 0.315 8 | 0.251 5 | USA | 1996-2019 | 61.7 |
Broad研究所 | 95 | 0.210 5 | 0.097 5 | USA | 2012-2019 | 61.1 |
先锋国际良种公司 | 77 | 0.052 6 | 0.070 2 | USA | 1991-2019 | 57.1 |
Cellectis公司 | 70 | 0 | 0 | France | 2002-2019 | 20.0 |
江南大学 | 66 | 0 | 0 | China | 2006-2019 | 57.6 |
上海交通大学 | 62 | 0 | 0 | China | 2003-2019 | 45.2 |
天津科技大学 | 43 | 0 | 0 | China | 2008-2019 | 74.4 |
Sangamo公司 | 42 | 0.052 6 | 0.070 2 | USA | 2000-2019 | 23.8 |
CRISPR Therapeutics AG | 40 | 0 | 0 | Switzerland | 2016-2019 | 92.5 |
芜湖英特菲尔生物制品产业研究院 | 40 | 0 | 0 | China | 2017-2018 | 100 |
Editas Medicine公司 | 38 | 0 | 0 | USA | 2015-2019 | 94.7 |
宾夕法尼亚大学 | 36 | 0.052 6 | 0.070 2 | USA | 1997-2019 | 80.6 |
GEN HOSPITAL CORP | 36 | 0.157 9 | 0.093 6 | Netherlands | 2006-2019 | 69.4 |
中国科学院上海生命科学研究院 | 36 | 0 | 0 | China | 2010-2019 | 72.2 |
浙江大学 | 35 | 0 | 0 | China | 2003-2019 | 65.7 |
孟山都公司 | 34 | 0 | 0 | USA | 1999-2019 | 47.1 |
美国卫生与公众服务部 | 33 | 0.210 5 | 0.074 1 | USA | 1993-2019 | 36.4 |
华中农业大学 | 33 | 0 | 0 | China | 2004-2019 | 75.8 |
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Natural cell strain | 3.303 22 | 32.734 | 0.094 7 |
Type B hepatitis | 3.303 22 | 32.734 | |
HBs antibody | 3.303 22 | 32.734 | |
HBs antigen | 3.303 22 | 32.734 | |
Selectable marker | 2.833 21 | 18.934 | |
DNA construct | 2.610 07 | 16.533 | |
Plant cell | 1.868 13 | 11.793 | |
Nucleotide sequence | 1.478 67 | 11.300 | |
Transgenic plant | 2.204 61 | 10.365 | |
Cell line | 2.022 28 | 8.269 | |
DNA sequence | 1.275 07 | 6.479 | |
Recombinant plasmid | 2.022 28 | 6.000 | |
Base pairs | 2.966 75 | 6.000 | |
Host cell | 1.734 60 | 4.777 | |
DNA fragment | 1.868 13 | 0 | |
Genetic engineering | 0 | 0 | |
Hepatitis B virus | 2.715 43 | 0 | |
Recombinant DNA | 2.022 28 | 0 | |
Eukaryotic cell | 2.966 75 | 0 | |
Genome DNA | 2.715 43 | 0 |
表2 1981-1998主题词指标计算(按度中心度降序)
Table 2 Subject index calculation in 1981-1998(in descen-ding order of degree centrality)
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Natural cell strain | 3.303 22 | 32.734 | 0.094 7 |
Type B hepatitis | 3.303 22 | 32.734 | |
HBs antibody | 3.303 22 | 32.734 | |
HBs antigen | 3.303 22 | 32.734 | |
Selectable marker | 2.833 21 | 18.934 | |
DNA construct | 2.610 07 | 16.533 | |
Plant cell | 1.868 13 | 11.793 | |
Nucleotide sequence | 1.478 67 | 11.300 | |
Transgenic plant | 2.204 61 | 10.365 | |
Cell line | 2.022 28 | 8.269 | |
DNA sequence | 1.275 07 | 6.479 | |
Recombinant plasmid | 2.022 28 | 6.000 | |
Base pairs | 2.966 75 | 6.000 | |
Host cell | 1.734 60 | 4.777 | |
DNA fragment | 1.868 13 | 0 | |
Genetic engineering | 0 | 0 | |
Hepatitis B virus | 2.715 43 | 0 | |
Recombinant DNA | 2.022 28 | 0 | |
Eukaryotic cell | 2.966 75 | 0 | |
Genome DNA | 2.715 43 | 0 |
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Biological sample | 1.922 65 | 44.496 | 0.647 4 |
Contiguous nucleotides | 2.277 69 | 42.217 | |
Nucleic acid | 1.325 97 | 41.981 | |
Mature form | 2.987 36 | 39.012 | |
Test compound | 2.229 68 | 38.442 | |
Gene product | 1.899 93 | 38.299 | |
Fusion protein | 1.528 75 | 34.985 | |
Plant cell | 1.706 43 | 32.862 | |
Hybridization complex | 2.922 83 | 30.708 | |
Isolated polypeptide | 1.725 12 | 30.219 | |
Isolated polynucleotide | 1.536 53 | 29.627 | |
Amino acid sequence | 0.875 13 | 27.723 | |
Gene expression | 1.282 62 | 26.028 | |
Transgenic plant | 1.969 72 | 25.165 | |
Host cell | 0.711 81 | 21.987 | |
Immune response | 2.198 91 | 21.368 | |
Candidate compound | 2.559 92 | 21.237 | |
Nucleotide sequence | 0.592 50 | 20.104 | |
Expression vector | 1.246 90 | 19.426 | |
DNA sequence | 1.022 59 | 11.494 |
表3 1999-2002年主题词指标计算(按度中心度降序)
Table 3 Subject index calculation in 1999-2002 (in descen-ding order of degree centrality)
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Biological sample | 1.922 65 | 44.496 | 0.647 4 |
Contiguous nucleotides | 2.277 69 | 42.217 | |
Nucleic acid | 1.325 97 | 41.981 | |
Mature form | 2.987 36 | 39.012 | |
Test compound | 2.229 68 | 38.442 | |
Gene product | 1.899 93 | 38.299 | |
Fusion protein | 1.528 75 | 34.985 | |
Plant cell | 1.706 43 | 32.862 | |
Hybridization complex | 2.922 83 | 30.708 | |
Isolated polypeptide | 1.725 12 | 30.219 | |
Isolated polynucleotide | 1.536 53 | 29.627 | |
Amino acid sequence | 0.875 13 | 27.723 | |
Gene expression | 1.282 62 | 26.028 | |
Transgenic plant | 1.969 72 | 25.165 | |
Host cell | 0.711 81 | 21.987 | |
Immune response | 2.198 91 | 21.368 | |
Candidate compound | 2.559 92 | 21.237 | |
Nucleotide sequence | 0.592 50 | 20.104 | |
Expression vector | 1.246 90 | 19.426 | |
DNA sequence | 1.022 59 | 11.494 |
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Nucleic acid | 2.178 88 | 79.601 | 0.568 4 |
Zinc finger nuclease | 3.008 16 | 58.326 | |
Homologous recombination | 1.842 40 | 52.074 | |
Transgenic plant | 2.004 16 | 51.744 | |
Target site | 2.522 65 | 50.376 | |
Amino acid sequence | 1.436 94 | 48.599 | |
Expression cassette | 2.379 55 | 45.211 | |
Fusion protein | 2.284 24 | 44.801 | |
DNA sequence | 1.703 21 | 44.456 | |
Nucleotide sequence | 1.024 28 | 39.950 | |
Plant cell | 1.749 46 | 39.896 | |
Genomic DNA | 1.966 70 | 39.607 | |
Host cell | 1.269 88 | 38.907 | |
Expression vector | 1.467 71 | 37.421 | |
Pharmaceutical composition | 2.659 85 | 33.778 | |
Biological sample | 3.029 21 | 30.261 | |
Test compound | 3.382 85 | 25.944 | |
Immune response | 2.801 82 | 24.097 | |
Polynucleotide fragment | 3.268 44 | 21.520 | |
Escherichia coli | 1.314 84 | 14.790 |
表4 2003-2012年主题词指标计算(按度中心度降序)
Table 4 Subject index calculation in 2003-2012 (in descen-ding order of degree centrality)
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Nucleic acid | 2.178 88 | 79.601 | 0.568 4 |
Zinc finger nuclease | 3.008 16 | 58.326 | |
Homologous recombination | 1.842 40 | 52.074 | |
Transgenic plant | 2.004 16 | 51.744 | |
Target site | 2.522 65 | 50.376 | |
Amino acid sequence | 1.436 94 | 48.599 | |
Expression cassette | 2.379 55 | 45.211 | |
Fusion protein | 2.284 24 | 44.801 | |
DNA sequence | 1.703 21 | 44.456 | |
Nucleotide sequence | 1.024 28 | 39.950 | |
Plant cell | 1.749 46 | 39.896 | |
Genomic DNA | 1.966 70 | 39.607 | |
Host cell | 1.269 88 | 38.907 | |
Expression vector | 1.467 71 | 37.421 | |
Pharmaceutical composition | 2.659 85 | 33.778 | |
Biological sample | 3.029 21 | 30.261 | |
Test compound | 3.382 85 | 25.944 | |
Immune response | 2.801 82 | 24.097 | |
Polynucleotide fragment | 3.268 44 | 21.520 | |
Escherichia coli | 1.314 84 | 14.790 |
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Cas9 endonuclease protein | 6.912 49 | 262.816 | 0.963 2 |
Recombinant vector | 3.030 93 | 113.231 | |
Transgenic plant | 2.896 11 | 108.182 | |
Nucleic acid | 2.496 67 | 105.949 | |
Expression cassette | 2.393 43 | 101.815 | |
Target site | 2.309 83 | 98.452 | |
Fusion protein | 2.299 85 | 98.050 | |
Eukaryotic cell | 2.496 67 | 93.579 | |
Pharmaceutical composition | 2.635 83 | 93.104 | |
Plant cell | 2.154 60 | 86.491 | |
Host cell | 1.983 43 | 85.187 | |
Target sequence | 1.940 95 | 83.445 | |
DNA sequence | 2.046 89 | 75.651 | |
Base pair sequence | 1.923 76 | 72.866 | |
Expression vector | 1.666 79 | 72.115 | |
Amino acid sequence | 1.525 71 | 66.227 | |
Guide RNA | 1.327 12 | 57.870 | |
Nucleotide sequence | 1.188 09 | 51.973 | |
Short palindromic repeat | 1.084 28 | 47.544 | |
Seq id no | 0.619 54 | 27.454 |
表5 2013-2019年主题词指标计算(按度中心度降序)
Table 5 Subject index calculation in 2013-2019 (in descen-ding order of degree centrality)
主题词 Subject | IDF因子 IDF factor | 度中心度 Degree centrality | 网络密度 Network density |
---|---|---|---|
Cas9 endonuclease protein | 6.912 49 | 262.816 | 0.963 2 |
Recombinant vector | 3.030 93 | 113.231 | |
Transgenic plant | 2.896 11 | 108.182 | |
Nucleic acid | 2.496 67 | 105.949 | |
Expression cassette | 2.393 43 | 101.815 | |
Target site | 2.309 83 | 98.452 | |
Fusion protein | 2.299 85 | 98.050 | |
Eukaryotic cell | 2.496 67 | 93.579 | |
Pharmaceutical composition | 2.635 83 | 93.104 | |
Plant cell | 2.154 60 | 86.491 | |
Host cell | 1.983 43 | 85.187 | |
Target sequence | 1.940 95 | 83.445 | |
DNA sequence | 2.046 89 | 75.651 | |
Base pair sequence | 1.923 76 | 72.866 | |
Expression vector | 1.666 79 | 72.115 | |
Amino acid sequence | 1.525 71 | 66.227 | |
Guide RNA | 1.327 12 | 57.870 | |
Nucleotide sequence | 1.188 09 | 51.973 | |
Short palindromic repeat | 1.084 28 | 47.544 | |
Seq id no | 0.619 54 | 27.454 |
[1] | 刘蓓, 尉玮, 王丽华. 基因编辑新技术研究进展[J]. 亚热带农业研究, 2013, 9(4):262-269. |
Liu B, Wei W, Wang LH. Progress in new techniques of gene editing[J]. Subtrop Agric Res, 2013, 9(4):262-269. | |
[2] |
Ma D, Liu F. Genome editing and its applications in model organisms[J]. Genomics Proteomics Bioinformatics, 2015, 13(6):336-344.
doi: 10.1016/j.gpb.2015.12.001 URL |
[3] |
Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age[J]. Science, 2018, 359(6372):eaan4672.
doi: 10.1126/science.aan4672 URL |
[4] | 方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术[J]. 生物化学与生物物理进展, 2013, 40(8):691-702. |
Fang R, Chang F, Sun ZL, et al. New method of genome editing derived from CRISPR/Cas9[J]. Prog Biochem Biophys, 2013, 40(8):691-702. | |
[5] |
Ledley FD, McNameey LM, Uzdil V, et al. Why commercialization of gene therapy stalled;examining the life cycles of gene therapy technologies[J]. Gene Ther, 2014, 21(2):188-194.
doi: 10.1038/gt.2013.72 pmid: 24305420 |
[6] |
Magee CL, Kleyn PW, Monks BM, et al. Pre-existing technological core and roots for the CRISPR breakthrough[J]. PLoS One, 2018, 13(9):e0198541.
doi: 10.1371/journal.pone.0198541 URL |
[7] |
Li X, Zhao DZ, Hu XJ. Gatekeepers in knowledge transfer between science and technology:an exploratory study in the area of gene editing[J]. Scientometrics, 2020, 124(2):1261-1277.
doi: 10.1007/s11192-020-03537-y URL |
[8] | 曹学伟, 高晓巍, 陈锐. 基于文献计量分析的基因编辑技术发展研究[J]. 全球科技经济瞭望, 2018, 33(4):60-72. |
Cao XW, Gao XW, Chen R. Analysis of international development trend of gene editing technology based on bibliometrics[J]. Glob Sci Technol Econ Outlook, 2018, 33(4):60-72. | |
[9] |
王友华, 邹婉侬, 张熠, 等. 基于专利文献的全球CRISPR技术研发进展分析与展望[J]. 生物技术通报, 2018, 34(12):186-194.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0204 |
Wang YH, Zou WN, Zhang Y, et al. Research and prospect of the CRISPR technology based on global patent information[J]. Biotechnol Bull, 2018, 34(12):186-194. | |
[10] | 范月蕾, 王慧媛, 王恒哲, 等. 国内外CRISPR/Cas9基因编辑专利技术发展分析[J]. 生命科学, 2018, 30(9):1010-1018. |
Fan YL, Wang HY, Wang HZ, et al. Patent analysis on the development of domestic and foreign gene editing technologies[J]. Chin Bull Life Sci, 2018, 30(9):1010-1018. | |
[11] | 汪庆, 李军莲, 朱钦磊, 等. 基于专利分析的基因组编辑技术国际竞争态势研究分析[J]. 中华医学图书情报杂志, 2019, 28(2):12-18. |
Wang Q, Li JL, Zhu QL, et al. Study on international competition situation in genome editing technology based on analysis of patents[J]. Chin J Med Libr Inf Sci, 2019, 28(2):12-18. | |
[12] | 刘玉琴, 汪雪锋, 雷孝平. 科研关系构建与可视化系统设计与实现[J]. 图书情报工作, 2015, 59(8):103-110, 125. |
Liu YQ, Wang XF, Lei XP. Design and implementation of academic relation and visualization system[J]. Libr Inf Serv, 2015, 59(8):103-110, 125. | |
[13] |
Gao LD, Porter AL, Wang J, et al. Technology life cycle analysis method based on patent documents[J]. Technol Forecast Soc Chang, 2013, 80(3):398-407.
doi: 10.1016/j.techfore.2012.10.003 URL |
[14] | 刘玉琴, 朱东华, 吕琳. 基于文本挖掘技术的产品技术成熟度预测[J]. 计算机集成制造系统, 2008, 14(3):506-510, 542. |
Liu YQ, Zhu DH, Lv L. Technology maturity of product forecasting based on text mining[J]. Comput Integr Manuf Syst, 2008, 14(3):506-510, 542. | |
[15] | 李欣, 温阳, 黄鲁成, 等. 多层网络分析视域下的新兴技术研发合作网络演化特征研究[J]. 情报杂志, 2021, 40(1):62-70. |
Li X, Wen Y, Huang LC, et al. Research on evolution characteristics of emerging technology R & D cooperation network from the perspective of multi-level network analysis[J]. J Intell, 2021, 40(1):62-70. | |
[16] | 刘玉琴, 逄金辉, 崔志成, 等. 一种简易的技术主题图绘制方法[J]. 图书情报工作, 2017, 61(13):125-132. |
Liu YQ, Pang JH, Cui ZC, et al. An economic method of drawing a technology theme map[J]. Libr Inf Serv, 2017, 61(13):125-132. | |
[17] | 胡阿沛, 张静, 雷孝平, 等. 基于文本挖掘的专利技术主题分析研究综述[J]. 情报杂志, 2013, 32(12):88-92, 61. |
Hu A, Zhang J, Lei XP, et al. A review of technical topic analysis based on text mining[J]. J Intell, 2013, 32(12):88-92, 61. | |
[18] |
Lan M, Tan CL, Su J, et al. Supervised and traditional term weighting methods for automatic text categorization[J]. IEEE Trans Pattern Anal Mach Intell, 2009, 31(4):721-735.
doi: 10.1109/TPAMI.2008.110 URL |
[19] | 邓亚娟, 王欢, 杜若, 等. 基于加权复杂网络的公路网等级结构划分[J]. 华南理工大学学报:自然科学版, 2015, 43(4):33-40. |
Deng YJ, Wang H, Du R, et al. Division of highway network hierarchy based on weighted complex network[J]. J South China Univ Technol:Nat Sci Ed, 2015, 43(4):33-40. | |
[20] | 张红岩, 申乃坤, 周兴. 基因敲除技术及其在微生物育种中的应用[J]. 酿酒科技, 2010(4):21-25. |
Zhang HY, Shen NK, Zhou X. Gene knockout technology and its application in microbial breeding[J]. Liquor Mak Sci Technol, 2010(4):21-25. | |
[21] |
Cornu TI, Thibodeau-Beganny S, Guhl E, et al. DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases[J]. Mol Ther, 2008, 16(2):352-358.
doi: 10.1038/sj.mt.6300357 URL |
[22] |
Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers[J]. Nat Biotechnol, 2015, 33(5):510-517.
doi: 10.1038/nbt.3199 pmid: 25849900 |
[1] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[2] | 岳荣生, 程兴茹, 李俊, 唐巧玲, 康宇立, 王友华. 全球抗草甘膦基因专利分析与技术展望[J]. 生物技术通报, 2022, 38(12): 324-333. |
[3] | 高威芳, 章礼平, 朱鹏. 等温扩增技术及其结合CRISPR在微生物快速检测中的研究进展[J]. 生物技术通报, 2020, 36(5): 22-31. |
[4] | 徐倩, 孙巍, 张学福. 玉米转基因技术专利权人合作态势分析[J]. 生物技术通报, 2020, 36(4): 225-236. |
[5] | 李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望[J]. 生物技术通报, 2020, 36(11): 209-221. |
[6] | 汤波,孙照霖,戴蕴平. 牛的基因编辑技术研究进展[J]. 生物技术通报, 2018, 34(5): 41-47. |
[7] | 常丽, 邓欣, 唐慧娟, 李建军, 黄思齐, 陈安国, 张翠萍, 赵立宁, 李德芳. 基于专利分析的大麻研发态势及技术构成[J]. 生物技术通报, 2018, 34(12): 195-201. |
[8] | 邓欣, 梅时勇, 陈小军, 肖清明, 黎宇. 基于Innography的黄精利用技术态势及热点分析[J]. 生物技术通报, 2018, 34(12): 202-206. |
[9] | 杨晶, 戴求仲, 侯振平, 王延周, 王满生. 基于专利分析的麻类作物饲料化利用技术态势及热点分析[J]. 生物技术通报, 2018, 34(12): 207-214. |
[10] | 李晓曼, 孙巍, 徐倩, 郝心宁. 基于专利计量的农业生物技术发展态势分析[J]. 生物技术通报, 2018, 34(12): 221-231. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||