生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 209-221.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0328
收稿日期:
2020-03-25
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
李树磊,男,硕士研究生,研究方向:植物分子生物学与基因工程;E-mail: 基金资助:
LI Shu-lei(), ZHENG Hong-yan, WANG Lei()
Received:
2020-03-25
Published:
2020-11-26
Online:
2020-11-20
摘要:
基因编辑技术是指对目标基因进行“编辑”,实现对特定基因片段的删除、插入和替换的一项技术。如今该技术已经被广泛应用于细菌、真菌、动物和植物等领域,其中成簇的规律间隔的短回文重复序列及其相关系统(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins,CRISPR/Cas system)作为第三代编辑技术,其效用远超于前两代并因此在近年来迅猛发展。简要介绍了锌指核酸酶(Zinc-finger nucleases,ZFNs)、转录激活子样效应因子核酸酶(Transcription activator-like effectors nucleases,TALEN)和CRISPR/Cas共3种基因组编辑技术的作用机理,并总结CRISPR/Cas系统的功能、局限性以及其在作物育种上的应用,最后对基因编辑作物的未来进行展望。
李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望[J]. 生物技术通报, 2020, 36(11): 209-221.
LI Shu-lei, ZHENG Hong-yan, WANG Lei. Application and Prospect of Gene Editing Technology in Crop Breeding[J]. Biotechnology Bulletin, 2020, 36(11): 209-221.
目的性状 | 靶基因 | 编辑类型 | 作物 | 参考文献 |
---|---|---|---|---|
穗型增大 | miR396 | NHEJ | 水稻 | [38] |
穗重增加 | DEP1 | NHEJ | 水稻 | [39] |
籽粒增大,粒数增多 | Gn1a,GS3,DEP1 | NHEJ | 水稻 | [82] |
籽粒增大,粒重增加 | GW2 | NHEJ | 小麦,水稻 | [41-42] |
减少不饱和脂肪酸 | FAD2 | NHEJ | 油菜 | [47] |
高直链淀粉含量 | SBEIIb | NHEJ | 水稻 | [49] |
花青素增加 | Rc | NHEJ | 水稻 | [45] |
热敏感雄性不育 | TMS5 | NHEJ | 玉米 | [83] |
抗除草剂 | DEP1,GW2 | ABE | 小麦 | [84] |
抗除草剂 | ALS | NHEJ | 油菜 | [52] |
抗除草剂 | EPSPS | NHEJ | 水稻 | [50] |
抗除草剂 | ALS | NHEJ | 水稻 | [85-86] |
抗除草剂 | ALS | NHEJ | 小麦 | [51] |
抗除草剂 | ACC | CBE,ABE | 水稻 | [53] |
抗除草剂 | SF3B1 | NHEJ | 水稻 | [57] |
抗除草剂 | ALS | HR | 大豆,玉米 | [87-88] |
抗虫 | CYP71A1 | NHEJ | 水稻 | [58] |
干旱抗性 | miRNA166 | NHEJ | 水稻 | [68] |
干旱抗性 | ARGOS8 promoter | HR | 玉米 | [66] |
干旱抗性 | GhRDL1 | NHEJ | 棉花 | [89] |
镉耐性 | Nramp5 | NHEJ | 水稻 | [64] |
白叶枯病抗性 | SWEET11,SWEET13,SWEET14 | NHEJ | 水稻 | [72] |
白粉病抗性 | TaMLO-A1,TaMLO-B1,TaMLO-D1 | NHEJ | 小麦 | [81] |
白粉病抗性 | EDR1 | NHEJ | 小麦 | [90] |
稻瘟病抗性 | ERF922 | NHEJ | 水稻 | [76] |
水稻球形病毒抗性 | eIF4G | NHEJ | 水稻 | [78] |
表1 CRISPR/Cas系统在作物育种上的应用
目的性状 | 靶基因 | 编辑类型 | 作物 | 参考文献 |
---|---|---|---|---|
穗型增大 | miR396 | NHEJ | 水稻 | [38] |
穗重增加 | DEP1 | NHEJ | 水稻 | [39] |
籽粒增大,粒数增多 | Gn1a,GS3,DEP1 | NHEJ | 水稻 | [82] |
籽粒增大,粒重增加 | GW2 | NHEJ | 小麦,水稻 | [41-42] |
减少不饱和脂肪酸 | FAD2 | NHEJ | 油菜 | [47] |
高直链淀粉含量 | SBEIIb | NHEJ | 水稻 | [49] |
花青素增加 | Rc | NHEJ | 水稻 | [45] |
热敏感雄性不育 | TMS5 | NHEJ | 玉米 | [83] |
抗除草剂 | DEP1,GW2 | ABE | 小麦 | [84] |
抗除草剂 | ALS | NHEJ | 油菜 | [52] |
抗除草剂 | EPSPS | NHEJ | 水稻 | [50] |
抗除草剂 | ALS | NHEJ | 水稻 | [85-86] |
抗除草剂 | ALS | NHEJ | 小麦 | [51] |
抗除草剂 | ACC | CBE,ABE | 水稻 | [53] |
抗除草剂 | SF3B1 | NHEJ | 水稻 | [57] |
抗除草剂 | ALS | HR | 大豆,玉米 | [87-88] |
抗虫 | CYP71A1 | NHEJ | 水稻 | [58] |
干旱抗性 | miRNA166 | NHEJ | 水稻 | [68] |
干旱抗性 | ARGOS8 promoter | HR | 玉米 | [66] |
干旱抗性 | GhRDL1 | NHEJ | 棉花 | [89] |
镉耐性 | Nramp5 | NHEJ | 水稻 | [64] |
白叶枯病抗性 | SWEET11,SWEET13,SWEET14 | NHEJ | 水稻 | [72] |
白粉病抗性 | TaMLO-A1,TaMLO-B1,TaMLO-D1 | NHEJ | 小麦 | [81] |
白粉病抗性 | EDR1 | NHEJ | 小麦 | [90] |
稻瘟病抗性 | ERF922 | NHEJ | 水稻 | [76] |
水稻球形病毒抗性 | eIF4G | NHEJ | 水稻 | [78] |
[1] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc Natl Acad Sci USA, 2011,108(50):20260-20264.
doi: 10.1073/pnas.1116437108 URL pmid: 22106295 |
[2] |
Scheben A, Wolter F, Batley J, et al. Towards CRISPR/Cas crops - bringing together genomics and genome editing[J]. New Phytol, 2017,216(3):682-698.
doi: 10.1111/nph.14702 URL pmid: 28762506 |
[3] |
Pacher M, Puchta H. From classical mutagenesis to nuclease-based breeding - directing natural DNA repair for a natural end-product[J]. Plant J, 2017,90(4):819-833.
doi: 10.1111/tpj.13469 URL pmid: 28027431 |
[4] |
Prado JR, Segers G, Voelker T, et al. Genetically engineered crops:from idea to product[J]. Annu Rev Plant Biol, 2014,65:769-790.
doi: 10.1146/annurev-arplant-050213-040039 URL pmid: 24579994 |
[5] |
Lin L, Wu LP, Chandrasegaran S. Functional domains in Fok I restriction endonuclease[J]. Proceedings of the National Academy of Sciences of the United States of America, 89(10):4275-4279.
doi: 10.1073/pnas.89.10.4275 URL pmid: 1584761 |
[6] |
Kim YG, Chandrasegaran S. Chimeric restriction endonuclease[J]. Proceedings of the National Academy of Sciences of the United States of America, 91(3):883-887.
doi: 10.1073/pnas.91.3.883 URL pmid: 7905633 |
[7] |
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes:zinc finger fusions to Fok I cleavage domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 93(3):1156-1160.
URL pmid: 8577732 |
[8] |
Kim YG, Smith J, Durgesha M, et al. Chimeric restriction enzyme:Gal4 fusion to fokl cleavage domain[J]. Biological Chemistry, 2009,379(4-5):489-496.
doi: 10.1515/bchm.1998.379.4-5.489 URL pmid: 9628342 |
[9] |
Carroll D. Genome engineering with zinc-finger nucleases[J]. Genetics, 2011,188(4):773-782.
doi: 10.1534/genetics.111.131433 URL pmid: 21828278 |
[10] |
Bitinaite J, Wah DA, Aggarwal AK, et al. FokI dimerization is required for DNA cleavage[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(18):10570-10575.
doi: 10.1073/pnas.95.18.10570 URL pmid: 9724744 |
[11] | Jeff S, Marina B, Whitby FG, et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains[J]. Nucleic Acids Research, 2000(17):17. |
[12] |
Joung JK, Sander JD. TALENs:a widely applicable technology for targeted genome editing[J]. Nat Rev Mol Cell Biol, 2013,14(1):49-55.
doi: 10.1038/nrm3486 URL pmid: 23169466 |
[13] |
Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nat Biotechnol, 2007,25(7):778-785.
doi: 10.1038/nbt1319 URL pmid: 17603475 |
[14] |
Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011,29(2):143-148.
URL pmid: 21179091 |
[15] |
Liang L, Fan XD. CRISPR-Cas system:a powerful tool for genome engineering[J]. Plant Molecular Biology, 2014,85(3):209-218.
doi: 10.1007/s11103-014-0188-7 URL pmid: 24639266 |
[16] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012,337(6096):816-821.
doi: 10.1126/science.1225829 URL pmid: 22745249 |
[17] |
Zhang JP, Li XL, Li GH, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage[J]. Genome Biol, 2017,18(1):35.
doi: 10.1186/s13059-017-1164-8 URL pmid: 28219395 |
[18] |
Rees HA, Liu DR. Base editing:precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018,19(12):770-788.
doi: 10.1038/s41576-018-0059-1 URL pmid: 30323312 |
[19] |
Harris RS, Petersen-Mahrt SK, Neuberger MS. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators[J]. Molecular Cell, 2002,10(5):1247-1253.
doi: 10.1016/s1097-2765(02)00742-6 URL pmid: 12453430 |
[20] |
Zong Y, Wang Y, Li C, et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion[J]. Nat Biotechnol, 2017,35(5):438-440.
URL pmid: 28244994 |
[21] |
Matsoukas IG. Commentary:Programmable base editing of A center dot T to G center dot C in genomic DNA without DNA cleavage[J]. Frontiers in Genetics, 2018,9:21.
doi: 10.3389/fgene.2018.00021 URL pmid: 29469899 |
[22] |
O’Connell MR, Oakes BL, Sternberg SH, et al. Programmable RNA recognition and cleavage by CRISPR/Cas9[J]. Nature, 2014,516(7530):263-266.
URL pmid: 25274302 |
[23] |
Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299):aaf5573.
doi: 10.1126/science.aaf5573 URL pmid: 27256883 |
[24] |
Rauch S, He E, Srienc M, et al. Programmable RNA-Guided RNA effector proteins built from human parts[J]. Cell, 2019,178(1):122-134.
doi: 10.1016/j.cell.2019.05.049 URL pmid: 31230714 |
[25] |
Bass BL, Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate[J]. Cell, 55(6):1089-1098.
URL pmid: 3203381 |
[26] |
Matthews MM, Thomas JM, Zheng Y, et al. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity[J]. Nature Structural & Molecular Biology, 2016,23(5):426-433.
doi: 10.1038/nsmb.3203 URL pmid: 27065196 |
[27] |
Cox DBT, Gootenberg JS, Abudayyeh OO, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017,358(6366):1019-1027.
doi: 10.1126/science.aaq0180 URL pmid: 29070703 |
[28] |
Abudayyeh OO, Gootenberg JS, Franklin B, et al. A cytosine deaminase for programmable single-base RNA editing[J]. Science, 2019,365(6451):382-386.
URL pmid: 31296651 |
[29] |
Cheng AW, Jillette N, Lee P, et al. Casilio:a versatile CRISPR-Cas9-Pumilio hybrid for gene regulation and genomic labeling[J]. Cell Res, 2016,26(2):254-257.
doi: 10.1038/cr.2016.3 URL pmid: 26768771 |
[30] |
Long L, Guo H, Yao D, et al. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio[J]. Cell Res, 2015,25(5):638-641.
URL pmid: 25849246 |
[31] |
Kearns NA, Pham H, Tabak B, et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion[J]. Nat Methods, 2015,12(5):401-403.
doi: 10.1038/nmeth.3325 URL pmid: 25775043 |
[32] |
Wang H, Nakamura M, Abbott TR, et al. CRISPR-mediated live imaging of genome editing and transcription[J]. Science, 2019,365(6459):1301-1305.
URL pmid: 31488703 |
[33] |
Chen YC, Farzadfard F, Gharaei N, et al. Randomized CRISPR-Cas transcriptional perturbation screening reveals protective genes against alpha-synuclein toxicity[J]. Mol Cell, 2017,68(1):247-257 e245.
doi: 10.1016/j.molcel.2017.09.014 URL pmid: 28985507 |
[34] |
Han K, Jeng EE, Hess GT, et al. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions[J]. Nat Biotechnol, 2017,35(5):463-474.
doi: 10.1038/nbt.3834 URL pmid: 28319085 |
[35] |
Che R, Tong H, Shi B, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nat Plants, 2015,2:15195.
doi: 10.1038/nplants.2015.195 URL pmid: 27250747 |
[36] | Gao F, Wang K, Liu Y, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture[J]. Nat Plants, 2015,2(1):15196. |
[37] | Duan P, Ni S, Wang J, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nat Plants, 2015,2(1):15203. |
[38] |
Miao C, Wang D, He R, et al. Mutations in MIR396e and MIR396f increase grain size and modulate shoot architecture in rice[J]. Plant Biotechnol J, 2020,18(2):491-501.
doi: 10.1111/pbi.13214 URL pmid: 31336020 |
[39] |
Huang XZ, Qian Q, Liu ZB, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genet, 2009,41(4):494-497.
doi: 10.1038/ng.352 URL pmid: 19305410 |
[40] |
Wang Y, Geng LZ, Yuan ML, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9[J]. Plant Cell Reports, 2017,36(8):1333-1343.
doi: 10.1007/s00299-017-2158-4 URL pmid: 28584922 |
[41] |
Wang W, Pan Q, He F, et al. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid wheat[J]. CRISPR J, 2018,1(1):65-74.
URL pmid: 30627700 |
[42] |
Zhang Y, Li D, Zhang D, et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits[J]. Plant J, 2018,94(5):857-866.
URL pmid: 29570880 |
[43] |
Furukawa T, Maekawa M, Oki T, et al. The Rc and Rd genes are involved in proanthocyanidin synjournal in rice pericarp[J]. Plant J, 2007,49(1):91-102.
URL pmid: 17163879 |
[44] |
Sweeney MT, Thomson MJ, Pfeil BE, et al. Caught red-handed:Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice[J]. Plant Cell, 2006,18(2):283-294.
doi: 10.1105/tpc.105.038430 URL pmid: 16399804 |
[45] |
Zhu Y, Lin Y, Chen S, et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice[J]. Plant Biotechnol J, 2019,17(11):2096-2105.
URL pmid: 31002444 |
[46] |
Wells R, Trick M, Soumpourou E, et al. The control of seed oil polyunsaturate content in the polyploid crop species Brassica napus[J]. Mol Breed, 2014,33(2):349-362.
doi: 10.1007/s11032-013-9954-5 URL |
[47] |
Okuzaki A, Ogawa T, Koizuka C, et al. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus[J]. Plant Physiol Biochem, 2018,131:63-69.
doi: 10.1016/j.plaphy.2018.04.025 URL pmid: 29753601 |
[48] | Resistant Starch. Proceedings for the 2nd plenary meeting of EURESTA:European FLAIR Concerted Action No. 11 on physiological implications of the consumption of resistant starch in man. Crete, 29 May-2 June 1991[J]. Eur J Clin Nutr, 1992,46(Suppl 2):S1-148. |
[49] |
Sun YW, Jiao GA, Liu ZP, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes[J]. Frontiers in Plant Science, 2017,8:298.
URL pmid: 28326091 |
[50] |
Li J, Meng XB, Zong Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J]. Nature Plants, 2016,2(10):16139.
doi: 10.1038/nplants.2016.139 URL |
[51] |
Zhang R, Liu JX, Chai ZZ, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nature Plants, 2019,5(5):480-485.
URL pmid: 30988404 |
[52] |
Wu J, Chen C, Xian G, et al. Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing[J]. Plant Biotechnol J, 2020,18(9):1857-1859.
doi: 10.1111/pbi.13368 URL pmid: 32096325 |
[53] |
Li C, Zhang R, Meng X, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020,38(7):875-882.
doi: 10.1038/s41587-019-0393-7 URL pmid: 31932727 |
[54] |
Ling Y, Alshareef S, Butt H, et al. Pre-mRNA splicing repression triggers abiotic stress signaling in plants[J]. Plant J, 2017,89(2):291-309.
doi: 10.1111/tpj.13383 URL pmid: 27664942 |
[55] |
AlShareef S, Ling Y, Butt H, et al. Herboxidiene triggers splicing repression and abiotic stress responses in plants[J]. BMC Genomics, 2017,18(1):260.
URL pmid: 28347276 |
[56] | Miller-Wideman M, Makkar N, Tran M, et al. Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847. Taxonomy, fermentation, isolation, physico-chemical and biological properties[J]. J Antibiot(Tokyo), 1992,45(6):914-921. |
[57] | Butt H, Eid A, Monuin AA, et al. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors[J]. Gerome Biol, 2019,20(1):73. |
[58] |
Lu HP, Luo T, Fu HW, et al. Resistance of rice to insect pests mediated by suppression of serotonin biosynjournal[J]. Nat Plants, 2018,4(6):338-344.
URL pmid: 29735983 |
[59] |
崔玉静, 黄益宗, 朱永官. 镉对人类健康的危害及其影响因子的研究进展[J]. 卫生研究, 2006(5):656-659.
pmid: 17086727 |
Cui YJ, Huang YZ, Zhu YG. Adverse health effects of cadmium and related factors[J]. Journal of Hygiene Research, 2006(5):656-659.
URL pmid: 17086727 |
|
[60] | Yuan LP. Development of hybrid rice to ensure food security[J]. Rice Science, 2014,21(1):1-2. |
[61] |
Jallad KN. Heavy metal exposure from ingesting rice and its related potential hazardous health risks to humans[J]. Environ Sci Pollut Res Int, 2015,22(20):15449-15458.
URL pmid: 26004565 |
[62] |
Ishikawa S, Ishimaru Y, Igura M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. Proc Natl Acad Sci USA, 2012,109(47):19166-19171.
doi: 10.1073/pnas.1211132109 URL pmid: 23132948 |
[63] |
Clemens S, Aarts MG, Thomine S, et al. Plant science:the key to preventing slow cadmium poisoning[J]. Trends Plant Sci, 2013,18(2):92-99.
doi: 10.1016/j.tplants.2012.08.003 URL pmid: 22981394 |
[64] |
Tang L, Mao B, Li Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Sci Rep, 2017,7(1):14438.
doi: 10.1038/s41598-017-14832-9 URL pmid: 29089547 |
[65] |
Shi J, Habben JE, Archibald RL, et al. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both arabidopsis and maize[J]. Plant Physiol, 2015,169(1):266-282.
doi: 10.1104/pp.15.00780 URL pmid: 26220950 |
[66] |
Shi J, Gao H, Wang H, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnol J, 2017,15(2):207-216.
doi: 10.1111/pbi.12603 URL pmid: 27442592 |
[67] |
Singh A, Gautam V, Singh S, et al. Plant small RNAs:advancement in the understanding of biogenesis and role in plant development[J]. Planta, 2018,248(3):545-558.
URL pmid: 29968061 |
[68] |
Zhang J, Zhang H, Srivastava AK, et al. Knock-down of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018,176(3):2082-2094.
doi: 10.1104/pp.17.01432 URL pmid: 29367235 |
[69] |
White FF, Potnis N, Jones JB, et al. The type III effectors of Xanthomonas[J]. Mol Plant Pathol, 2009,10(6):749-766.
doi: 10.1111/j.1364-3703.2009.00590.x URL pmid: 19849782 |
[70] |
Bezrutczyk M, Yang J, Eom JS, et al. Sugar flux and signaling in plant-microbe interactions[J]. Plant J, 2018,93(4):675-685.
doi: 10.1111/tpj.13775 URL pmid: 29160592 |
[71] |
Zhou J, Peng Z, Long J, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice[J]. Plant J, 2015,82(4):632-643.
URL pmid: 25824104 |
[72] |
Oliva R, Ji C, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nat Biotechnol, 2019,37(11):1344-1350.
doi: 10.1038/s41587-019-0267-z URL pmid: 31659337 |
[73] |
Jung J, Won SY, Suh SC, et al. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis[J]. Planta, 2007,225(3):575-588.
doi: 10.1007/s00425-006-0373-2 URL pmid: 16937017 |
[74] |
Vogel MO, Moore M, Konig K, et al. Fast retrograde signaling in response to high light involves metabolite export, MITOGEN-ACTIVATED PROTEIN KINASE6, and AP2/ERF transcription factors in Arabidopsis[J]. Plant Cell, 2014,26(3):1151-1165.
URL pmid: 24668746 |
[75] |
Muller M, Munne-Bosch S. Ethylene response factors:A key regulatory hub in hormone and stress signaling[J]. Plant Physiol, 2015,169(1):32-41.
doi: 10.1104/pp.15.00677 URL pmid: 26103991 |
[76] |
Wang F, Wang C, Liu P, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922[J]. PLoS One, 2016,11(4):e0154027.
doi: 10.1371/journal.pone.0154027 URL pmid: 27116122 |
[77] | Anjaneyulu A, Satapathy MK, Shukla VD. Rice tungro[M]. Lebanon:Science Publishers, Inc. , 1995. |
[78] |
Macovei A, Sevilla NR, Cantos C, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus[J]. Plant Biotechnol J, 2018,16(11):1918-1927.
doi: 10.1111/pbi.12927 URL pmid: 29604159 |
[79] | Panstruga R. Serpentine plant MLO proteins as entry portals for powdery mildew fungi[J]. Biochemical Society Transactions, 2005,33(2):389-392. |
[80] |
Piffanelli P, Ramsay L, Waugh R, et al. A barley cultivation-associated polymorphism conveys resistance to powdery mildew[J]. Nature, 2004,430(7002):887-891.
doi: 10.1038/nature02781 URL pmid: 15318221 |
[81] |
Wang Y, Cheng X, Shan Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nat Biotechnol, 2014,32(9):947-951.
doi: 10.1038/nbt.2969 URL pmid: 25038773 |
[82] |
Li M, Li X, Zhou Z, et al. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system[J]. Front Plant Sci, 2016,7:377.
doi: 10.3389/fpls.2016.00377 URL pmid: 27066031 |
[83] |
Li J, Zhang H, Si X, et al. Generation of thermosensitive male-sterile maize by targeted knockout of the ZmTMS5 gene[J]. J Genet Genomics, 2017,44(9):465-468.
doi: 10.1016/j.jgg.2017.02.002 URL pmid: 28412227 |
[84] |
Li C, Zong Y, Wang Y, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biol, 2018,19(1):59.
doi: 10.1186/s13059-018-1443-z URL pmid: 29807545 |
[85] |
Endo M, Mikami M, Toki S. Biallelic gene targeting in rice[J]. Plant Physiol, 2016,170(2):667-677.
doi: 10.1104/pp.15.01663 URL pmid: 26668334 |
[86] |
Haroon B, Ayman E, Zahir A, et al. Efficient CRISPR/Cas9-mediated genome editing using a chimeric single-guide RNA molecule[J]. Frontiers in Plant Science, 2017,8:1441.
doi: 10.3389/fpls.2017.01441 URL pmid: 28883826 |
[87] |
Svitashev S, Young JK, Schwartz C, et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA[J]. Plant Physiology, 2015,169(2):931-945.
URL pmid: 26269544 |
[88] |
Li Z, Liu ZB, Xing A, et al. Cas9-Guide RNA directed genome editing in soybean[J]. Plant Physiol, 2015,169(2):960-970.
doi: 10.1104/pp.15.00783 URL pmid: 26294043 |
[89] | Dass A, Abdin MZ, Reddy VS, et al. Isolation and characterization of the dehydration stress-inducible GhRDL1 promoter from the cultivated upland cotton(Gossypium hirsutum)[J]. Journal of Plant Biochemistry & Biotechnology, 2016,26(1):1-7. |
[90] |
Zhang Y, Bai Y, Wu G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. Plant J, 2017,91(4):714-724.
URL pmid: 28502081 |
[91] | Endo M, Mikami M, Endo A, et al. Genome editing in plants by engineered CRISPR-Cas9 recognizing NG PAM[J]. Nat Plant, 2019,5(1):14-17. |
[92] |
Zhong ZH, Zhang YX, You Q, et al. Plant genome editing using FnCpf1 and LbCpf1 nucleases at redefined and altered PAM sites[J]. Molecular Plant, 2018,11(7):999-1002.
doi: 10.1016/j.molp.2018.03.008 URL pmid: 29567452 |
[93] |
Lin CS, Hsu CT, Yang LH, et al. Application of protoplast technology to CRISPR/Cas9 mutagenesis:From single cell mutation detection to mutant plant regeneration[J]. Plant Biotechnology Journal, 2018,16(7):1295-1310.
doi: 10.1111/pbi.12870 URL pmid: 29230929 |
[94] |
Mout R, Ray M, Yesilbag Tonga G, et al. Direct cytosolic delivery of CRISPR/Cas9-Ribonucleoprotein for efficient gene editing[J]. ACS Nano, 2017,11(3):2452-2458.
doi: 10.1021/acsnano.6b07600 URL pmid: 28129503 |
[95] |
Kuscu C, Arslan S, Singh R, et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease[J]. Nat Biotechnol, 2014,32(7):677-683.
doi: 10.1038/nbt.2916 URL pmid: 24837660 |
[96] |
Tsai SQ, Zheng Z, Nguyen NT, et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases[J]. Nat Biotechnol, 2015,33(2):187-197.
doi: 10.1038/nbt.3117 URL pmid: 25513782 |
[97] |
Fu Y, Sander JD, Reyon D, et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs[J]. Nat Biotechnol, 2014,32(3):279-284.
doi: 10.1038/nbt.2808 URL pmid: 24463574 |
[98] |
Liang Z, Chen K, Zhang Y, et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins[J]. Nat Protoc, 2018,13(3):413-430.
doi: 10.1038/nprot.2017.145 URL pmid: 29388938 |
[99] |
Komor AC, Badran AH, Liu DR. CRISPR-Based technologies for the manipulation of eukaryotic genomes[J]. Cell, 2017,168(1-2):20-36.
doi: 10.1016/j.cell.2016.10.044 URL pmid: 27866654 |
[100] |
Zhang Y, Massel K, Godwin ID, et al. Applications and potential of genome editing in crop improvement[J]. Genome Biol, 2018,19(1):210.
doi: 10.1186/s13059-018-1586-y URL pmid: 30501614 |
[101] | Bruetschy C. The EU regulatory framework on genetically modified organisms(GMOs)[J]. Transgenic Res, 2019,28(S2):169-174. |
[102] |
Waltz E. Gene-edited CRISPR mushroom escapes US regulation[J]. Nature, 2016,532(7599):293-293.
doi: 10.1038/nature.2016.19754 URL pmid: 27111611 |
[1] | 刘佳慧, 刘叶, 花尔并, 王猛. 谷氨酸棒杆菌中胞嘧啶碱基编辑工具的PAM拓展[J]. 生物技术通报, 2023, 39(9): 49-57. |
[2] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[3] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[4] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[5] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[6] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[7] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[8] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[9] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[10] | 李双喜, 华进联. 抗猪繁殖与呼吸障碍综合征基因编辑猪研究进展[J]. 生物技术通报, 2023, 39(10): 50-57. |
[11] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[12] | 唐光甫, 桂艳玲, 满海乔, 赵杰宏. 利用CRISPR/Cas 9编辑红曲霉pyrG基因对其次生代谢的影响[J]. 生物技术通报, 2022, 38(8): 198-205. |
[13] | 赖昕彤, 王柯岚, 由雨欣, 谭俊杰. 基于CRISPR/Cas系统的DNA碱基编辑研究进展[J]. 生物技术通报, 2022, 38(6): 1-12. |
[14] | 刘静静, 刘晓蕊, 李琳, 王盈, 杨海元, 戴一凡. 利用CRISPR/Cas9技术建立OXTR基因敲除猪胎儿成纤维细胞系[J]. 生物技术通报, 2022, 38(6): 272-278. |
[15] | 陈映丹, 张扬, 夏嫱, 孙虹霞. CRISPR/Cas基因编辑技术及其在微藻研究中的应用[J]. 生物技术通报, 2022, 38(5): 257-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||