生物技术通报 ›› 2021, Vol. 37 ›› Issue (12): 29-40.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0190
吕燕1(), 王文彬2, 苟琪1, 王英娜1, 李靖宇1, 刘建利1()
收稿日期:
2021-02-19
出版日期:
2021-12-26
发布日期:
2022-01-19
作者简介:
吕燕,女,硕士研究生,研究方向:微生物生态学;E-mail: 基金资助:
LV Yan1(), WANG Wen-bin2, GOU Qi1, WANG Ying-na1, LI Jing-yu1, LIU Jian-li1()
Received:
2021-02-19
Published:
2021-12-26
Online:
2022-01-19
摘要:
探究根腐病病原菌侵染对宁夏枸杞根区土壤丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)群落组成的影响,为后续开展应用AMF防控宁夏枸杞根腐病奠定基础。从宁夏银川、宁夏中宁和甘肃靖远采集宁夏枸杞健康和根腐病发病植株根系和土壤样品,采用湿筛倾析法和AMF定殖染色法探究3个样地根区土壤AMF的孢子组成、密度和根系菌根侵染率以及AMF多样性与土壤理化因子间的相关性。结果显示,宁夏枸杞健康植株受根腐病病原菌入侵后,孢子密度、总侵染率和总球囊霉素含量不发生变化,中宁样地易提取球囊霉素含量显著升高;不同样地宁夏枸杞健康植株和发病植株根区土壤AMF群落组成差异显著(R2=0.875,P=0.001);中宁样地和靖远样地优势属种发生变化,但银川样地不变。根腐病发生改变宁夏枸杞根区土壤AMF群落结构,会引起银川样地AMF的α-多样性升高,但对中宁样地和靖远样地α-多样性无影响;AMF孢子密度、种丰度和总侵染率与土壤理化性质存在相关性,但土壤理化性质不影响AMF物种多样性,影响AMF定殖。
吕燕, 王文彬, 苟琪, 王英娜, 李靖宇, 刘建利. 根腐病对宁夏枸杞根区土壤丛枝菌根真菌群落的影响[J]. 生物技术通报, 2021, 37(12): 29-40.
LV Yan, WANG Wen-bin, GOU Qi, WANG Ying-na, LI Jing-yu, LIU Jian-li. Effect of Root Rot on Arbuscular Mycorrhizal Fungi Community in Root Zone Soil of Lycium barbarum L.[J]. Biotechnology Bulletin, 2021, 37(12): 29-40.
土壤理化性质 Soil physicochemical properties | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | ||||
有机质OM/(g·kg-1) | 12.82±0.64b | 20.18±0.98a | 12.83±2.07a | 12.12±1.1a | 11.42±0.94a | 11.92±1.52a | |||
全磷TP/(g·kg-1) | 0.7±0.07 a | 0.96±0.37a | 1.33±0.35a | 1.25±0.32a | 0.95±0.12a | 0.54±0.29a | |||
硝态氮/NO3--N(mg·kg-1) | 6.06±0.84a | 4.58±0.39b | 6.71±0.13a | 4.82±0.43b | 4.95±0.29b | 6.9±0.05a | |||
氨态氮/NH4+-N(mg·kg-1) | 0.41±0.07a | 0.23±0.17a | 0.39±0.12a | 0.53±0.03a | 0.41±0.32 a | 0.32±0.16a | |||
全氮TN/(g·kg-1) | 1.29±0.2 a | 1.56±0.32 a | 1.05±0.17 a | 1.36±0.05 a | 1.09±0.12 a | 1.26±0.09 a | |||
全钾TK/(g·kg-1) | 2.72±0.05 a | 2.55±0.09 a | 2.15±0.51 a | 2.45±0.26 a | 2.65±0.16b | 3.94±0.26a | |||
速效钾AK/(mg·kg-1) | 144.08±5.71a | 107.96±10a | 114.43±18.84a | 155.02±55.15a | 145.06±6.98a | 136.47±2.62 a | |||
速效磷AP/(mg·kg-1) | 7.29±2.24a | 6.75±1.64a | 6.22±1.43a | 7.25±1.39a | 4.56±2.71a | 2.98±0.54a | |||
pH | 7.78±0.09a | 7.68±0.18a | 7.59±0.04b | 7.9±0.08a | 8.04±0.22a | 8.24±0.1a |
表1 不同样地宁夏枸杞健康与根腐病发病植株土壤理化性质
Table 1 Physicochemical properties of soil around healthy and root rot-infected L. barbarum L. plants from different cultivated sites
土壤理化性质 Soil physicochemical properties | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | ||||
有机质OM/(g·kg-1) | 12.82±0.64b | 20.18±0.98a | 12.83±2.07a | 12.12±1.1a | 11.42±0.94a | 11.92±1.52a | |||
全磷TP/(g·kg-1) | 0.7±0.07 a | 0.96±0.37a | 1.33±0.35a | 1.25±0.32a | 0.95±0.12a | 0.54±0.29a | |||
硝态氮/NO3--N(mg·kg-1) | 6.06±0.84a | 4.58±0.39b | 6.71±0.13a | 4.82±0.43b | 4.95±0.29b | 6.9±0.05a | |||
氨态氮/NH4+-N(mg·kg-1) | 0.41±0.07a | 0.23±0.17a | 0.39±0.12a | 0.53±0.03a | 0.41±0.32 a | 0.32±0.16a | |||
全氮TN/(g·kg-1) | 1.29±0.2 a | 1.56±0.32 a | 1.05±0.17 a | 1.36±0.05 a | 1.09±0.12 a | 1.26±0.09 a | |||
全钾TK/(g·kg-1) | 2.72±0.05 a | 2.55±0.09 a | 2.15±0.51 a | 2.45±0.26 a | 2.65±0.16b | 3.94±0.26a | |||
速效钾AK/(mg·kg-1) | 144.08±5.71a | 107.96±10a | 114.43±18.84a | 155.02±55.15a | 145.06±6.98a | 136.47±2.62 a | |||
速效磷AP/(mg·kg-1) | 7.29±2.24a | 6.75±1.64a | 6.22±1.43a | 7.25±1.39a | 4.56±2.71a | 2.98±0.54a | |||
pH | 7.78±0.09a | 7.68±0.18a | 7.59±0.04b | 7.9±0.08a | 8.04±0.22a | 8.24±0.1a |
样地 Sites | 孢子密度 Spore density/(Spores·g-1)soil | 总侵染率 Total colonization rate/% | 易提取球囊霉素 EEG/(mg·g-1) | 总球囊霉素 TG/(mg·g-1) | |
---|---|---|---|---|---|
银川 Yinchuan | 健康树 Healthy tree | 9.77±0.40a | 2.50±1.21a | 20.71±4.98a | 57.16±10.33a |
病树 Root rot-infected tree | 9.70±1.67a | 7.72±4.03a | 29.37±5.03a | 70.50±2.37a | |
中宁 Zhongning | 健康树 Healthy tree | 34.90±11.47a | 10.27±7.69a | 18.09±2.77b | 61.74±7.26a |
病树 Root rot-infected tree | 36.40±12.25a | 17.85±9.80a | 24.42±2.75a | 67.65±5.48a | |
靖远 Jingyuan | 健康树 Healthy tree | 36.30±13.13a | 30.00±3.27a | 12.54±1.46a | 50.50±6.98a |
病树 Root rot-infected tree | 42.67±10.16a | 33.23±1.00a | 22.42±8.11a | 55.76±15.49a |
表2 不同样地宁夏枸杞健康与根腐病发病植株土壤AMF孢子密度、侵染率和球囊霉素
Table 2 AMF spore density,infection rate and glomalin content in the soil of healthy and root rot plants of L. barbarum L. from different cultivated sites
样地 Sites | 孢子密度 Spore density/(Spores·g-1)soil | 总侵染率 Total colonization rate/% | 易提取球囊霉素 EEG/(mg·g-1) | 总球囊霉素 TG/(mg·g-1) | |
---|---|---|---|---|---|
银川 Yinchuan | 健康树 Healthy tree | 9.77±0.40a | 2.50±1.21a | 20.71±4.98a | 57.16±10.33a |
病树 Root rot-infected tree | 9.70±1.67a | 7.72±4.03a | 29.37±5.03a | 70.50±2.37a | |
中宁 Zhongning | 健康树 Healthy tree | 34.90±11.47a | 10.27±7.69a | 18.09±2.77b | 61.74±7.26a |
病树 Root rot-infected tree | 36.40±12.25a | 17.85±9.80a | 24.42±2.75a | 67.65±5.48a | |
靖远 Jingyuan | 健康树 Healthy tree | 36.30±13.13a | 30.00±3.27a | 12.54±1.46a | 50.50±6.98a |
病树 Root rot-infected tree | 42.67±10.16a | 33.23±1.00a | 22.42±8.11a | 55.76±15.49a |
图1 AMF孢子形态 1:双网无梗囊霉 Acaulospora bireticulata. 2:椒红无梗囊霉 Acaulospora capsicula. 3:凹坑无梗囊霉 Acaulospora excavate. 4:浅窝无梗囊霉 Acaulospora lacunosa. 5:光壁无梗囊霉 Acaulospora laevis. 6:蜜色无梗囊霉 Acaulospora mellea. 7:皱襞无梗囊霉 Acaulospora rugosa. 8:细凹无梗囊霉 Acaulospora scrobiculata. 9:孢果无梗囊霉 Acaulospora sporocarpia. 10:近明球囊霉 Claroideoglomus claroideum. 11:待霄草近明球囊霉 Claroideoglomus drummondii. 12:层状近明球囊霉 Claroideoglomus lamellosum. 13:纯黄近明球囊霉 Claroideoglomus luteum. 14:卷曲球囊霉 Glomus convolutum. 15:团集球囊霉 Glomus glomerulatum. 16:海得拉巴球囊霉 Glomus hyderabadensis. 17:大果球囊霉 Glomus macrocarpum. 18:宽柄球囊霉 Glomus magnicaule. 19:黑球囊霉 Glomus melanosporum. 20:多梗球囊霉 Glomus multicaule. 21:具疱球囊霉 Glomus pustulatum. 22:网状球囊霉 Glomus reticulatum. 23:扭形球囊霉 Glomus tortuosum. 24:地表球囊霉 Glomus versiforme. 25:Glomus sp1. 26:Glomus sp2. 27:Glomus sp3. 28:明根孢囊霉 Rhizophagus clarus. 29:网纹盾巨孢囊霉 Scutellospora reticulata. 30:缩隔球囊霉 Septoglomus constrictum. 31:沙荒隔球囊霉 Septoglomus deserticola. 32:黏质隔球囊霉 Septoglomus viscosum
Fig.1 Spore morphology of AMF
图2 属水平不同样地宁夏枸杞健康与根腐病发病植株根区土中AMF相对丰度图
Fig.2 Relative abundance of AMF community at genus level among healthy and root rot-infected plants of L. barbarum L. from different cultivated sites
属 Genus | 种 Species | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | |||||
无梗囊霉属 Acaulospora | 双网无梗囊霉A. bireticulata | 37.16±3.61 | 34.58±1.59 | - | 16.83±0.57 | 34.89±1.94 | 34.19±1.09 | |||
椒红无梗囊霉A. capsicula | 17.46±1.67 | 52.9±1.66 | - | 16.67±0.29 | 51.77±0.69 | 52.47±0.18 | ||||
凹坑无梗囊霉A. excavate | 51.41±0.47 | - | 0.61±0.53 | 33.97±0.85 | 51.64±0.31 | 57.75±0.51 | ||||
浅窝无梗囊霉A. lacunosa | - | - | 0.29±0.51 | 33.87±0.79 | - | - | ||||
光壁无梗囊霉A. laevis | 16.83±0.58 | 34.05±1.21 | 10.83±4.31 | 56.93±1.00 | 34.22±1.30 | - | ||||
蜜色无梗囊霉A. mellea | 52.49±2.12 | 51.84±0.91 | 5.28±0.83 | - | 16.61±0.19 | 16.59±0.15 | ||||
皱襞无梗囊霉A. rugosa | 33.54±0.49 | - | 4.13±4.66 | 52.59±1.41 | 34.76±2.18 | - | ||||
细凹无梗囊霉A. scrobiculata | - | 54.48±2.43 | - | - | 55.39±1.32 | 61.01±0.41 | ||||
孢果无梗囊霉A. sporocarpia | 16.72±0.37 | - | 0.15±0.26 | - | - | 33.3±0.32 | ||||
近明球囊霉属 Claroideoglomus | 近明球囊霉C. claroideum | - | - | 0.29±0.51 | 35.11±1.83 | - | - | |||
待霄草近明球囊霉C. drummondii | - | - | - | 16.59±0.15 | - | - | ||||
层状近明球囊霉C. lamellosum | - | - | 0.6±0.52 | 33.44±0.40 | 16.61±0.19 | - | ||||
纯黄近明球囊霉C. luteum | - | - | 2.91±3.25 | 34.67±1.46 | 16.62±0.21 | - | ||||
球囊霉属 Glomus | 卷曲球囊霉G. convolutum | - | 34.57±1.56 | 2.09±2.02 | 51.36±0.77 | - | - | |||
团集球囊霉G. glomerulatum | - | - | 0.15±0.26 | 16.67±0.30 | - | - | ||||
海得拉巴球囊霉G. hyderabadensis | - | 16.9±0.69 | - | - | - | - | ||||
大果球囊霉G. macrocarpum | 17.15±1.12 | 33.66±0.60 | 6.19±1.61 | - | 58.09±1.46 | 54.93±0.40 | ||||
宽柄球囊霉G. magnicaule | - | - | 0.15±0.26 | - | - | - | ||||
黑球囊霉G. melanosporum | 57.42±2.28 | 54.87±1.12 | 11.51±2.48 | 54.51±2.26 | 56.16±1.66 | 54.5±0.19 | ||||
多梗球囊霉G. multicaule | 33.65±0.57 | 52.63±0.43 | - | - | 16.61±0.19 | - | ||||
具疱球囊霉G. pustulatum | - | - | 1.68±2.17 | - | - | - | ||||
网状球囊霉G. reticulatum | 59.15±3.05 | 52.5±1.40 | 1.98±1.49 | 16.68±0.31 | 55.36±1.31 | 54.44±1.03 | ||||
G. sp1 | - | - | - | - | 52.7±0.19 | - | ||||
G. sp2 | 52.37±2.12 | - | - | - | - | - | ||||
G. sp3 | - | - | - | - | 55.26±1.33 | 53.67±1.42 | ||||
扭形球囊霉G. tortuosum | - | 56.58±0.97 | 1.68±2.53 | - | - | - | ||||
地表球囊霉G. versiforme | 67.25±4.38 | 64.72±2.28 | 10.61±2.93 | 53.74±1.95 | 34.51±1.33 | 51.9±0.65 | ||||
根孢囊霉属 Rhizophagus | 明根孢囊霉R. clarus | 33.65±0.57 | 16.7±0.34 | 21.26±3.06 | 64.67±1.60 | - | 16.59±0.15 | |||
盾巨孢囊霉属 Scutellospora | 网纹盾巨孢囊霉S. reticulata | - | 16.9±0.69 | 1.22±1.06 | 51.28±0.66 | - | 33.52±0.68 | |||
隔球囊霉属 Septoglomus | 缩隔球囊霉S. constrictum | 34.75±1.64 | 53.16±1.39 | 13.53±5.71 | 57.6±1.99 | 55.03±2.40 | 51.36±0.60 | |||
沙荒隔球囊霉S. deserticola | 16.82±0.56 | 16.76±0.46 | - | 33.51±0.52 | - | 54.85±0.90 | ||||
黏质隔球囊霉S. viscosum | - | - | 2.85±1.38 | - | 50.61±0.32 | 50.61±0.33 | ||||
种数 Number of species | 16 | 17 | 22 | 19 | 18 | 16 |
表3 种水平AMF空间分布重要值
Table 3 Important value of spatial distribution of AMF at species level
属 Genus | 种 Species | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | |||||
无梗囊霉属 Acaulospora | 双网无梗囊霉A. bireticulata | 37.16±3.61 | 34.58±1.59 | - | 16.83±0.57 | 34.89±1.94 | 34.19±1.09 | |||
椒红无梗囊霉A. capsicula | 17.46±1.67 | 52.9±1.66 | - | 16.67±0.29 | 51.77±0.69 | 52.47±0.18 | ||||
凹坑无梗囊霉A. excavate | 51.41±0.47 | - | 0.61±0.53 | 33.97±0.85 | 51.64±0.31 | 57.75±0.51 | ||||
浅窝无梗囊霉A. lacunosa | - | - | 0.29±0.51 | 33.87±0.79 | - | - | ||||
光壁无梗囊霉A. laevis | 16.83±0.58 | 34.05±1.21 | 10.83±4.31 | 56.93±1.00 | 34.22±1.30 | - | ||||
蜜色无梗囊霉A. mellea | 52.49±2.12 | 51.84±0.91 | 5.28±0.83 | - | 16.61±0.19 | 16.59±0.15 | ||||
皱襞无梗囊霉A. rugosa | 33.54±0.49 | - | 4.13±4.66 | 52.59±1.41 | 34.76±2.18 | - | ||||
细凹无梗囊霉A. scrobiculata | - | 54.48±2.43 | - | - | 55.39±1.32 | 61.01±0.41 | ||||
孢果无梗囊霉A. sporocarpia | 16.72±0.37 | - | 0.15±0.26 | - | - | 33.3±0.32 | ||||
近明球囊霉属 Claroideoglomus | 近明球囊霉C. claroideum | - | - | 0.29±0.51 | 35.11±1.83 | - | - | |||
待霄草近明球囊霉C. drummondii | - | - | - | 16.59±0.15 | - | - | ||||
层状近明球囊霉C. lamellosum | - | - | 0.6±0.52 | 33.44±0.40 | 16.61±0.19 | - | ||||
纯黄近明球囊霉C. luteum | - | - | 2.91±3.25 | 34.67±1.46 | 16.62±0.21 | - | ||||
球囊霉属 Glomus | 卷曲球囊霉G. convolutum | - | 34.57±1.56 | 2.09±2.02 | 51.36±0.77 | - | - | |||
团集球囊霉G. glomerulatum | - | - | 0.15±0.26 | 16.67±0.30 | - | - | ||||
海得拉巴球囊霉G. hyderabadensis | - | 16.9±0.69 | - | - | - | - | ||||
大果球囊霉G. macrocarpum | 17.15±1.12 | 33.66±0.60 | 6.19±1.61 | - | 58.09±1.46 | 54.93±0.40 | ||||
宽柄球囊霉G. magnicaule | - | - | 0.15±0.26 | - | - | - | ||||
黑球囊霉G. melanosporum | 57.42±2.28 | 54.87±1.12 | 11.51±2.48 | 54.51±2.26 | 56.16±1.66 | 54.5±0.19 | ||||
多梗球囊霉G. multicaule | 33.65±0.57 | 52.63±0.43 | - | - | 16.61±0.19 | - | ||||
具疱球囊霉G. pustulatum | - | - | 1.68±2.17 | - | - | - | ||||
网状球囊霉G. reticulatum | 59.15±3.05 | 52.5±1.40 | 1.98±1.49 | 16.68±0.31 | 55.36±1.31 | 54.44±1.03 | ||||
G. sp1 | - | - | - | - | 52.7±0.19 | - | ||||
G. sp2 | 52.37±2.12 | - | - | - | - | - | ||||
G. sp3 | - | - | - | - | 55.26±1.33 | 53.67±1.42 | ||||
扭形球囊霉G. tortuosum | - | 56.58±0.97 | 1.68±2.53 | - | - | - | ||||
地表球囊霉G. versiforme | 67.25±4.38 | 64.72±2.28 | 10.61±2.93 | 53.74±1.95 | 34.51±1.33 | 51.9±0.65 | ||||
根孢囊霉属 Rhizophagus | 明根孢囊霉R. clarus | 33.65±0.57 | 16.7±0.34 | 21.26±3.06 | 64.67±1.60 | - | 16.59±0.15 | |||
盾巨孢囊霉属 Scutellospora | 网纹盾巨孢囊霉S. reticulata | - | 16.9±0.69 | 1.22±1.06 | 51.28±0.66 | - | 33.52±0.68 | |||
隔球囊霉属 Septoglomus | 缩隔球囊霉S. constrictum | 34.75±1.64 | 53.16±1.39 | 13.53±5.71 | 57.6±1.99 | 55.03±2.40 | 51.36±0.60 | |||
沙荒隔球囊霉S. deserticola | 16.82±0.56 | 16.76±0.46 | - | 33.51±0.52 | - | 54.85±0.90 | ||||
黏质隔球囊霉S. viscosum | - | - | 2.85±1.38 | - | 50.61±0.32 | 50.61±0.33 | ||||
种数 Number of species | 16 | 17 | 22 | 19 | 18 | 16 |
图3 种水平不同样地宁夏枸杞健康与根腐病发病植株根区土中AMF差异物种
Fig. 3 AMF differentiated species in the root zone soil of L. barbarum L. healthy and root rot-infected plants at species level
样地Sites | 物种丰度Species richness(SR) | Shannon-Wiener index(H) | Simpson index(D) | |
---|---|---|---|---|
银川 Yinchuan | 健康树Healthy tree | 11.00±0a | 1.90±0.02b | 0.79±0.03b |
病树Root rot-infected tree | 13.00±0a | 2.21±0.07a | 0.85±0.02a | |
中宁 Zhongning | 健康树Healthy tree | 16.00±2.65a | 2.31±0.18a | 0.87±0.02a |
病树Root rot-infected tree | 13.33±1.53a | 2.09±0.09a | 0.83±0.02a | |
靖远 Jingyuan | 健康树Healthy tree | 14.00±2.65a | 2.34±0.19a | 0.90±0.03a |
病树Root rot-infected tree | 13.67±2.52a | 2.28±0.07a | 0.88±0.01a |
表4 不同样地宁夏枸杞健康和根腐病发病植株根区土壤AMF物种丰度和α-多样性
Table 4 AMF species richness and α-diversity in soil of healthy and infected plants of L. barbarum L. from different cultivated sites
样地Sites | 物种丰度Species richness(SR) | Shannon-Wiener index(H) | Simpson index(D) | |
---|---|---|---|---|
银川 Yinchuan | 健康树Healthy tree | 11.00±0a | 1.90±0.02b | 0.79±0.03b |
病树Root rot-infected tree | 13.00±0a | 2.21±0.07a | 0.85±0.02a | |
中宁 Zhongning | 健康树Healthy tree | 16.00±2.65a | 2.31±0.18a | 0.87±0.02a |
病树Root rot-infected tree | 13.33±1.53a | 2.09±0.09a | 0.83±0.02a | |
靖远 Jingyuan | 健康树Healthy tree | 14.00±2.65a | 2.34±0.19a | 0.90±0.03a |
病树Root rot-infected tree | 13.67±2.52a | 2.28±0.07a | 0.88±0.01a |
环境因子 Environmental factor | Shannon-Wiener index | 种丰度 Species richness | 孢子密度 Spore density | AMF总侵染率 Total colonization rate |
---|---|---|---|---|
有机质OM | 0.086 | -0.029 | -0.657 | -0.771 |
全磷TP | -0.029 | 0.580 | -0.257 | -0.200 |
硝态氮NO3--N | 0.486 | 0.435 | 0.429 | 0.314 |
氨态氮NH4+-N | -0.714 | -0.203 | -0.771 | -0.543 |
全氮TN | 0.143 | 0.116 | -0.029 | 0.257 |
全钾TK | 0.371 | -0.261 | 0.429 | 0.543 |
速效钾AK | -0.657 | -0.812* | -0.086 | 0.029 |
速效磷AP | -0.429 | 0.000 | -0.886* | -0.771 |
pH | 0.116 | -0.279 | 0.638 | 0.812* |
易提取球囊霉素EEG | 0.257 | 0.203 | -0.371 | -0.200 |
总球囊霉素TG | 0.143 | 0.435 | -0.600 | -0.543 |
表5 AMF物种多样性和环境因子相关性分析
Table 5 Correlation analysis between species diversity of AMF and environmental factors
环境因子 Environmental factor | Shannon-Wiener index | 种丰度 Species richness | 孢子密度 Spore density | AMF总侵染率 Total colonization rate |
---|---|---|---|---|
有机质OM | 0.086 | -0.029 | -0.657 | -0.771 |
全磷TP | -0.029 | 0.580 | -0.257 | -0.200 |
硝态氮NO3--N | 0.486 | 0.435 | 0.429 | 0.314 |
氨态氮NH4+-N | -0.714 | -0.203 | -0.771 | -0.543 |
全氮TN | 0.143 | 0.116 | -0.029 | 0.257 |
全钾TK | 0.371 | -0.261 | 0.429 | 0.543 |
速效钾AK | -0.657 | -0.812* | -0.086 | 0.029 |
速效磷AP | -0.429 | 0.000 | -0.886* | -0.771 |
pH | 0.116 | -0.279 | 0.638 | 0.812* |
易提取球囊霉素EEG | 0.257 | 0.203 | -0.371 | -0.200 |
总球囊霉素TG | 0.143 | 0.435 | -0.600 | -0.543 |
[1] | 杨云峰, 王光明, 侯祥英, 等. 我国枸杞育种与栽培研究进展[J]. 农业科技通讯, 2019(8):72-74. |
Yang YF, Wang GM, Hou XY, et al. Research progress of Lycium barbarum breeding and cultivation in China[J]. Bulletin of Agricultural Science and Technology, 2019(8):72-74. | |
[2] | 王益民, 张宝琳. 我国枸杞属物种资源及发展对策[J]. 世界林业研究, 2021, 34(3):107-111. |
Wang YM, Zhang BL. Species resources and the development strategies of Lycium L. in China[J]. World Forestry Research, 2021, 34(3):107-111. | |
[3] | 朱晓峰, 刘宏军, 席军强, 等. 枸杞根腐病病原菌的生物学特性研究[J]. 经济林研究, 2015, 33(4):128-132. |
Zhu XF, Liu HJ, Xi JQ, et al. Biological characteristics of root rot pathogen in Lycium barbarum[J]. Nonwood Forest Research, 2015, 33(4):128-132. | |
[4] | 朱会文. 甘肃省景电灌区枸杞根腐病的发生与防治[J]. 现代农业科技, 2018(5):121-125. |
Zhu HW. Occurrence and control of wolfberry root rot in Jingdian irrigation area of Gansu province[J]. Xiandai Nongye Keji, 2018(5):121-125. | |
[5] | 陈伶俐. 柴达木地区枸杞根腐病病原菌生物学特性及药剂防治研究[D]. 西宁:青海大学, 2015. |
Chen LL. Biological characteristics of pathogens causing wolf berry root rot and fungicides controlling experiment[D]. Xining:Qinghai University, 2015. | |
[6] | Bai L, Li X, Cao Y, et al. Fusarium culmorum and Fusarium equiseti causing root rot disease on Lycium barbarum(Goji Berry)in China[J]. Plant Disease, 2020, 104(11):3066. |
[7] | 郭香. 靖远县枸杞根腐病的发生危害及绿色防控技术[J]. 农业科技与信息, 2013(21):8-9. |
Guo X. Occurrence and damage of wolfberry root rot and green control technology in Jingyuan County[J]. Agricultural Science-technology and Information, 2013(21):8-9. | |
[8] | 刘淑娟. 景泰县草窝滩镇枸杞根腐病的发生及防治[J]. 防护林科技, 2009(3):116-117. |
Liu SJ. Occurrence and control of wolfberry root rot in Caowotan town of Jingtai County[J]. Protection Forest Science and Technology, 2009(3):116-117. | |
[9] | 陈伶俐, 马洪福, 李亚娟, 等. 10种杀菌剂对枸杞根腐病菌的室内毒力测定[J]. 青海大学学报:自然科学版, 2015, 33(5):10-13. |
Chen LL, Ma HF, Li YJ, et al. Toxicity measurement of 10 fungicides on Fusarium causing wolf berry rot root[J]. Journal of Qinghai University:Natural Science Edition, 2015, 33(5):10-13. | |
[10] | 张小彦, 何静, 侯彩霞, 等. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5):858-865. |
Zhang XY, He J, Hou CX, et al. Toxicity measurement of 10 fungicides on Fusarium causing wolf berry rot root[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5):858-865. | |
[11] | 宋学云, 俞建中, 许明伟. 2种药剂防治枸杞根腐病田间药效试验[J]. 中国园艺文摘, 2017, 33(7):225-226. |
Song XY, Yu JZ, Xu MW. Field efficacy of two fungicides against root rot of Lycium barbarum[J]. Chinese Horticulture Abstracts, 2017, 33(7):225-226. | |
[12] | 侯劭炜, 胡君利, 吴福勇, 等. 丛枝菌根真菌的抑病功能及其应用[J]. 应用与环境生物学报, 2018, 24(5):941-951. |
Hou SY, Hu JL, Wu FY, et al. The function and potential application of disease suppression by arbuscular mycorrhizal fungi[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):941-951. | |
[13] |
Aguilar-Paredes A, Valdés G, Nuti M. Ecosystem functions of microbial consortia in sustainable agriculture[J]. Agronomy, 2020, 10(12):1902.
doi: 10.3390/agronomy10121902 URL |
[14] | 李敏. AM真菌对西瓜抗枯萎病的效应及其机制[D]. 北京:中国农业大学, 2005. |
Li M. Effects of arbuscular mycorrhiza on resistance to Fusarium wilt by watermelon(Citrullus lanatus)and related mechanisms[D]. Beijing:China Agricultural University, 2005. | |
[15] |
Jamiolkowska A, Michalek W. Effect of mycorrhiza inoculation of pepper seedlings(Capsicum annuum L.)on the growth and protection against Fusarium oxysporum infection[J]. Acta Scientiarum Polonorum-hortorum Cultus, 2019, 18(1):161-169.
doi: 10.24326/asphc.2019.1.16 |
[16] |
Nafady NA, Hashem M, Hassan EA, et al. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases[J]. Biological Control, 2019, 138:104049.
doi: 10.1016/j.biocontrol.2019.104049 URL |
[17] |
Gao P, Guo Y, Li Y, et al. Effects of dual inoculation of AMF and rhizobium on alfalfa(Medicago sativa)root rot caused by Microdochium tabacinum[J]. Australasian Plant Pathology, 2018, 47(2):195-203.
doi: 10.1007/s13313-018-0543-2 URL |
[18] |
Ianson DC, Allen MF. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from Arid Sites[J]. Mycologia, 1986, 78:164-168.
doi: 10.2307/3793161 URL |
[19] |
刘海跃, 李欣玫, 张琳琳, 等. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2):252-260.
doi: 10.17521/cjpe.2017.0138 |
Liu HY, Li XM, Zhang LL, et al. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(2):252-260.
doi: 10.17521/cjpe.2017.0138 URL |
|
[20] | Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Mycological Society, 1970(55):158-160. |
[21] | 唐明, 杨慧平, 王亚军, 等. 宁夏旱生植物VA菌根真菌的研究[J]. 西北林学院学报, 2005(2):78-82. |
Tang M, Yang HP, Wang YJ, et al. Arbuscular mycorrhizal fungi(AMF)of xerophilous trees in Ningxia[J]. Journal of Northwest Forestry University, 2005(2):78-82. | |
[22] | 刘洪光. AM真菌提高枸杞耐盐性的机制研究[D]. 杨凌:西北农林科技大学, 2016. |
Liu HG. Mechanisms of arbuscular mycorrhizal fungi(AMF)enhancing salt tolerance of Lycium barbarum L.[D]. Yangling:Northwest A&F University, 2016. | |
[23] | 张海涵. 黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制[D]. 杨凌:西北农林科技大学, 2011. |
Zhang HH. Micro-ecosystem associated with the rhizosphere of Lycium barbarum from the loess plateau and the mechanisms of symbiotic fungal inoculation on the host plant growth and drought resistance[D]. Yangling:Northwest A&F University, 2011. | |
[24] | 盛敏. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究[D]. 杨凌:西北农林科技大学, 2008. |
Sheng M. Study on VA mycorrhizal fungi influence on salt-resistant mechanisms of maize plants and microbiological diversity in farmland soils[D]. Yangling:Northwest A&F University, 2008. | |
[25] | 赵蕾. 典型喀斯特区域土壤AMF与玉米纹枯病抗性关系探析[D]. 桂林:广西师范大学, 2019. |
Zhao L. Analysis of The relationship between AMF community and resistance to corn sheath blight in typical karst regions[D]. Guilin:Guangxi Normal University, 2019. | |
[26] | 宋放, 吴黎明, 李红飞, 等. 赣州橘园根系内生丛枝菌根真菌群落多样性鉴定及其受黄龙病菌侵染的影响[J]. 果树学报, 2019, 36(7):892-902. |
Song F, Wu LM, Li HF, et al. Identification of root endophytic arbuscular mycorrhizal fungi community diversity and its variations under the infection of Candidatus Liberibacter asiaticus in the citrus orchard of Ganzhou city[J]. Journal of Fruit Science, 2019, 36(7):892-902. | |
[27] | 张智慧, 陈迪, 赵丹丹, 等. 三七根中丛枝菌根真菌与深色有隔内生真菌侵染状况研究[J]. 中国中药杂志, 2011(17):2311-2315. |
Zhang ZH, Chen D, Zhao DD, et al. Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in Panax notoginseng[J]. China Journal of Chinese Materia Medica, 2011(17):2311-2315. | |
[28] | 陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3):1035-1046. |
Chen BD, Yu M, Hao ZP, et al. Research progress in arbuscular mycorrhizal technology[J]. Chinese Journal of Applied Ecology, 2019, 30(3):1035-1046. | |
[29] |
Aleandri MP, Martignoni D, Reda R, et al. Effects of preconditioning through mycorrhizal inoculation on the control of melon root rot and vine decline caused by Monosporascus cannonballus[J]. Journal of Phytopathology, 2015, 163(11/12):898-907.
doi: 10.1111/jph.12389 URL |
[30] | 王倡宪, 李晓林, 秦岭, 等. 利用丛枝菌根真菌提高植物抗病性研究进展[J]. 中国生物防治, 2007(S1):64-69. |
Wang CX, Li XL, Qin L, et al. Review on increasing resistance to pathogens by arbuscular mycorrhizal fungi[J]. Chinese Journal of Biological Control, 2007(S1):64-69. |
[1] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[2] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[3] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[4] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[5] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[6] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[7] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[8] | 徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234. |
[9] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[10] | 周晓楠, 徐金青, 雷雨晴, 王海庆. 基于GBS-seq的青藏扁蓿豆SNP标记开发[J]. 生物技术通报, 2022, 38(4): 303-310. |
[11] | 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2): 150-157. |
[12] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[13] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[14] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[15] | 刘爽, 姚佳妮, 沈聪, 代金霞. 荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J]. 生物技术通报, 2022, 38(12): 252-262. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||