生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 107-114.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0906
周希萌1,2(), 付春3, 马长乐1, 王兴军1,2(), 赵传志1,2()
收稿日期:
2020-07-20
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
周希萌,男,硕士研究生,研究方向:植物分子生物学;E-mail:基金资助:
ZHOU Xi-meng1,2(), FU Chun3, MA Chang-le1, WANG Xing-jun1,2(), ZHAO Chuan-zhi1,2()
Received:
2020-07-20
Published:
2021-03-26
Online:
2021-04-02
摘要:
分枝的数量及角度是决定作物株型的重要农艺性状。有效分枝数决定着作物的穗数或荚果数,进而决定着作物的产量;而分枝角度与光合效率、种植密度和抗病性密切相关,不仅影响作物的产量,也会影响作物的品质。由于分枝在作物生产中具有十分重要的作用,吸引了越来越多的研究者的注意,多个与分枝性状相关的关键基因被鉴定,分枝数目调控的分子机制研究取得了重要进展。过去的研究表明作物分枝受严格的遗传调控,同时也受环境条件的影响。综述了与作物分枝性状相关的基因克隆、表达、功能和分子调控机理方面的研究进展,以及环境因素对分枝的影响,探讨分枝调控在作物品种改良中的应用。
周希萌, 付春, 马长乐, 王兴军, 赵传志. 作物分枝的分子调控研究进展[J]. 生物技术通报, 2021, 37(3): 107-114.
ZHOU Xi-meng, FU Chun, MA Chang-le, WANG Xing-jun, ZHAO Chuan-zhi. Research Progress of Molecular Regulation of Branching of Crops[J]. Biotechnology Bulletin, 2021, 37(3): 107-114.
[1] |
Li X, Qian Q, Fu Z, et al. Control of tillering in rice[J]. Nature, 2003,422(6932):618-621.
doi: 10.1038/nature01518 URL pmid: 12687001 |
[2] |
Wang Y, Li J. The plant architecture of rice(Oryza sativa)[J]. Plant Molecular Biology, 2005,59(1):75-84.
doi: 10.1007/s11103-004-4038-x URL pmid: 16217603 |
[3] |
Adriani DE, Dingkuhn M, Dardou A, et al. Rice panicle plasticity in Near Isogenic Lines carrying a QTL for larger panicle is genotype and environment dependent[J]. Rice, 2016,9(1):28-28.
doi: 10.1186/s12284-016-0101-x URL pmid: 27255512 |
[4] | Jones HG, Kirby EJM. Effects of manipulation of number of tillers and water supply on grain yield in barley[J]. The Journal of Agricultural Science, 1977,88(2):391-397. |
[5] |
Xu C, Wang Y, Yu Y, et al. Degradation of MONOCULM 1 by APC/C(TAD1)regulates rice tillering[J]. Nature Communications, 2012,3:750.
doi: 10.1038/ncomms1743 URL pmid: 22434193 |
[6] |
Lu Z, Shao G, Xiong J, et al. MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation[J]. J Genet Genomics, 2015,42(2):71-78.
doi: 10.1016/j.jgg.2014.12.005 URL pmid: 25697101 |
[7] | Tabuchi H, Zhang Y, Hattori S, et al. LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems[J]. Plant Cell, 2011,23(9):3276-3287. |
[8] |
Shao G, Lu Z, Xiong J, et al. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice[J]. Mol Plant, 2019,12(8):1090-1102.
URL pmid: 31048024 |
[9] |
Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008,455(7210):195-200.
doi: 10.1038/nature07272 URL pmid: 18690207 |
[10] |
Wang B, Smith SM, Li J. Genetic regulation of shoot architecture[J]. Annu Rev Plant Biol, 2018,69:437-468.
doi: 10.1146/annurev-arplant-042817-040422 URL pmid: 29553800 |
[11] |
Alder A, Jamil M, Marzorati M, et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone[J]. Science, 2012,335(6074):1348-1351.
doi: 10.1126/science.1218094 URL pmid: 22422982 |
[12] |
Booker J, Sieberer T, Wright W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Dev Cell, 2005,8(3):443-449.
doi: 10.1016/j.devcel.2005.01.009 URL pmid: 15737939 |
[13] |
Seto Y, Yasui R, Kameoka H, et al. Strigolactone perception and deactivation by a hydrolase receptor DWARF14[J]. Nature Communications, 2019,10(1):191.
URL pmid: 30643123 |
[14] |
Cardoso C, Zhang Y, Jamil M, et al. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(6):2379-2384.
doi: 10.1073/pnas.1317360111 URL pmid: 24464483 |
[15] |
Zhou F, Lin Q, Zhu L, et al. D14-SCF(D3)-dependent degradation of D53 regulates strigolactone signalling[J]. Nature, 2013,504(7480):406-410.
URL pmid: 24336215 |
[16] |
Stanga JP, Smith SM, Briggs WR, et al. SUPPRESSOR OF MORE AXILLARY GROWTH2 1 controls seed germination and seedling development in Arabidopsis[J]. Plant Physiol, 2013,163(1):318-330.
doi: 10.1104/pp.113.221259 URL pmid: 23893171 |
[17] |
Minakuchi K, Kameoka H, Yasuno N, et al. FINE CULM1(FC1)works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant Cell Physiol, 2010,51(7):1127-1135.
doi: 10.1093/pcp/pcq083 URL pmid: 20547591 |
[18] |
Lu Z, Yu H, Xiong G, et al. Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture[J]. Plant Cell, 2013,25(10):3743-3759.
URL pmid: 24170127 |
[19] |
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010,42(6):545-549.
doi: 10.1038/ng.592 URL pmid: 20495564 |
[20] |
Schwarz S, Grande AV, Bujdoso N, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology, 2008,67(1-2):183-195.
doi: 10.1007/s11103-008-9310-z URL pmid: 18278578 |
[21] |
Xie Y, Liu Y, Wang H, et al. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis[J]. Nature Communications, 2017,8(1):348.
doi: 10.1038/s41467-017-00404-y URL pmid: 28839125 |
[22] |
Xie Y, Liu Y, Ma M, et al. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J]. Nature Communications, 2020,11(1):1955.
URL pmid: 32327664 |
[23] |
Song X, Lu Z, Yu H, et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell Res, 2017,27(9):1128-1141.
URL pmid: 28809396 |
[24] |
Guo S, Xu Y, Liu H, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14[J]. Nature Communications, 2013,4:1566.
doi: 10.1038/ncomms2542 URL pmid: 23463009 |
[25] |
Dun EA, de Saint Germain A, Rameau C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control[J]. Plant Physiol, 2012,158(1):487-498.
URL pmid: 22042819 |
[26] |
Otori K, Tamoi M, Tanabe N, et al. Enhancements in sucrose biosynjournal capacity affect shoot branching in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 2017,81(8):1470-1477.
doi: 10.1080/09168451.2017.1321954 URL pmid: 28471323 |
[27] | Xu Y, Mccouch SR, Shen Z. Transgressive segregation of tiller angle in rice caused by complementary gene action[J]. Crop Science, 1998,38(1):12-19. |
[28] |
Strohm AK, Baldwin KL, Masson PH. Multiple roles for membrane-associated protein trafficking and signaling in gravitropism[J]. Frontiers in Plant Science, 2012,3:274-274.
doi: 10.3389/fpls.2012.00274 URL pmid: 23248632 |
[29] |
Okamura M, Hirose T, Hashida Y, et al. Starch reduction in rice stems due to a lack of OsAGPL1 or OsAPL3 decreases grain yield under low irradiance during ripening and modifies plant architecture[J]. Functional Plant Biology, 2013,40(11):1137-1146.
doi: 10.1071/FP13105 URL pmid: 32481181 |
[30] |
Wu X, Tang D, Li M, et al. Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice[J]. Plant Physiol, 2013,161(1):317-329.
URL pmid: 23124325 |
[31] |
Morita MT, Sakaguchi K, Kiyose S, et al. A C2H2-type zinc finger protein, SGR5, is involved in early events of gravitropism in Arabidopsis inflorescence stems[J]. The Plant Journal:for Cell and Molecular Biology, 2006,47(4):619-628.
doi: 10.1111/j.1365-313X.2006.02807.x URL pmid: 16813575 |
[32] |
Sakuraba Y, Piao W, Lim JH, et al. Rice ONAC106 inhibits leaf senescence and increases salt tolerance and tiller angle[J]. Plant Cell Physiol, 2015,56(12):2325-2339.
URL pmid: 26443376 |
[33] |
Baldwin KL, Strohm AK, Masson PH. Gravity sensing and signal transduction in vascular plant primary roots[J]. Am J Bot, 2013,100(1):126-142.
URL pmid: 23048015 |
[34] |
Li P, Wang Y, Qian Q, et al. LAZY1 controls rice shoot gravitropism through regulating polar auxin transport[J]. Cell Res, 2007,17(5):402-410.
doi: 10.1038/cr.2007.38 URL pmid: 17468779 |
[35] |
Li Z, Liang Y, Yuan Y, et al. OsBRXL4 regulates shoot gravitropism and rice tiller angle through affecting LAZY1 nuclear localization[J]. Mol Plant, 2019,12(8):1143-1156.
URL pmid: 31200078 |
[36] |
Zhang N, Yu H, Yu H, et al. A core regulatory pathway controlling rice tiller angle mediated by the LAZY1-dependent asymmetric distribution of auxin[J]. Plant Cell, 2018,30(7):1461-1475.
doi: 10.1105/tpc.18.00063 URL pmid: 29915152 |
[37] |
Xu M, Zhu L, Shou H, et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant Cell Physiology, 2005,46(10):1674-1681.
doi: 10.1093/pcp/pci183 URL pmid: 16085936 |
[38] |
Chen Y, Fan X, Song W, et al. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1[J]. Plant Biotechnology Journal, 2012,10(2):139-149.
doi: 10.1111/j.1467-7652.2011.00637.x URL pmid: 21777365 |
[39] |
Sang D, Chen D, Liu G, et al. Strigolactones regulate rice tiller angle by attenuating shoot gravitropism through inhibiting auxin biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(30):11199-11204.
doi: 10.1073/pnas.1411859111 URL pmid: 25028496 |
[40] |
Germain ADS, Bonhomme S, Boyer F, et al. Novel insights into strigolactone distribution and signalling[J]. Current Opinion in Plant Biology, 2013,16(5):583-589.
doi: 10.1016/j.pbi.2013.06.007 URL pmid: 23830996 |
[41] |
Zhao L, Tan L, Zhu Z, et al. PAY1 improves plant architecture and enhances grain yield in rice[J]. Plant Journal, 2015,83(3):528-536.
doi: 10.1111/tpj.2015.83.issue-3 URL |
[42] |
Harmoko R, Yoo JY, Ko KS, et al. N-glycan containing a core α1, 3-fucose residue is required for basipetal auxin transport and gravitropic response in rice(Oryza sativa)[J]. New Phytologist, 2016,212(1):108-122.
doi: 10.1111/nph.14031 URL |
[43] |
Edelmann HG. Ethylene perception generates gravicompetence in gravi-incompetent leaves of rye seedlings[J]. Journal of Experimental Botany, 2002,53(375):1825-1828.
doi: 10.1093/jxb/erf025 URL pmid: 12147733 |
[44] |
Cui D, Neill SJ, Tang Z, et al. Gibberellin-regulated XET is differentially induced by auxin in rice leaf sheath bases during gravitropic bending[J]. Journal of Experimental Botany, 2005,56(415):1327-1334.
doi: 10.1093/jxb/eri133 URL pmid: 15767322 |
[45] |
Vandenbussche F, Suslov D, De Grauwe L, et al. The role of brassinosteroids in shoot gravitropism[J]. Plant Physiology, 2011,156(3):1331-1336.
URL pmid: 21571670 |
[46] |
Jin J, Huang W, Gao J, et al. Genetic control of rice plant architecture under domestication[J]. Nature Genetics, 2008,40(11):1365-1369.
doi: 10.1038/ng.247 URL pmid: 18820696 |
[47] |
Tan L, Li X, Liu F, et al. Control of a key transition from prostrate to erect growth in rice domestication[J]. Nature Genetics, 2008,40(11):1360-1364.
doi: 10.1038/ng.197 URL pmid: 18820699 |
[48] |
Hu M, Lv S, Wu W, et al. The domestication of plant architecture in African rice[J]. Plant Journal, 2018,94(4):661-669.
doi: 10.1111/tpj.2018.94.issue-4 URL |
[49] |
Wu Y, Zhao S, Li X, et al. Deletions linked to PROG1 gene participate in plant architecture domestication in Asian and African rice[J]. Nature Communications, 2018,9(1):4157.
URL pmid: 30297755 |
[50] |
Ku L, Wei X, Zhang S, et al. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize(Zea mays L.)[J]. PLoS One, 2011,6(6):e20621.
doi: 10.1371/journal.pone.0020621 URL pmid: 21687735 |
[51] |
Waite JM, Dardick C. TILLER ANGLE CONTROL 1 modulates plant architecture in response to photosynthetic signals[J]. Journal of Experimental Botany, 2018,69(20):4935-4944.
doi: 10.1093/jxb/ery253 URL pmid: 30099502 |
[52] |
Dardick C, Callahan AM, Horn R, et al. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species[J]. Plant Journal, 2013,75(4):618-630.
doi: 10.1111/tpj.2013.75.issue-4 URL |
[53] |
Zhang W, Tan L, Sun H, et al. Natural variations at TIG1 encoding a TCP transcription factor contribute to plant architecture domestication in rice[J]. Mol Plant, 2019,12(8):1075-1089.
doi: 10.1016/j.molp.2019.04.005 URL pmid: 31002981 |
[54] |
Dong H, Zhao H, Xie W, et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars[J]. PLoS Genetics, 2016,12(11):e1006412.
doi: 10.1371/journal.pgen.1006412 URL pmid: 27814357 |
[55] |
Wang L, Xu Y, Zhang C, et al. OsLIC, a novel CCCH-Type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling[J]. PLoS One, 2008,3(10):e3521.
URL pmid: 18953406 |
[56] |
Whipple CJ, Kebrom TH, Weber AL, et al. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(33):E506-512.
URL pmid: 21808030 |
[57] |
Xie C, Zhang G, An L, et al. Phytochrome-interacting factor-like protein OsPIL15 integrates light and gravitropism to regulate tiller angle in rice[J]. Planta, 2019,250(1):105-114.
doi: 10.1007/s00425-019-03149-8 URL pmid: 30927053 |
[58] |
Chen L, Zhao Y, Xu S, et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. New Phytol, 2018,218(1):219-231.
doi: 10.1111/nph.14977 URL pmid: 29364524 |
[59] |
Weng X, Wang L, Wang J, et al. Grain number, plant height, and heading date7 is a central regulator of growth, development, and stress response[J]. Plant Physiol, 2014,164(2):735-747.
URL pmid: 24390391 |
[60] |
Du H, Huang F, Wu N, et al. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice[J]. Mol Plant, 2018,11(4):584-597.
doi: 10.1016/j.molp.2018.01.004 URL pmid: 29366830 |
[61] |
Kohlen W, Charnikhova T, Liu Q, et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis[J]. Plant Physiol, 2011,155(2):974-987.
doi: 10.1104/pp.110.164640 URL pmid: 21119045 |
[62] |
Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development[J]. Trends Plant Sci, 2006,11(9):440-448.
doi: 10.1016/j.tplants.2006.07.004 URL pmid: 16899391 |
[63] |
Fang Z, Xia K, Yang X, et al. Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice[J]. Plant Biotechnol J, 2013,11(4):446-458.
doi: 10.1111/pbi.12031 URL |
[1] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[2] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[3] | 沈月, 陶宝杰, 华夏, 吕冰, 刘立军, 陈云. 独脚金内酯与激素互作调控根系生长的研究进展[J]. 生物技术通报, 2022, 38(8): 24-31. |
[4] | 胡琪, 侯玉翔, 李璿, 李梅兰. 普通白菜CYP79B2同源基因的克隆与表达[J]. 生物技术通报, 2022, 38(12): 168-174. |
[5] | 钱静洁, 林苏梦, 张冬平, 高勇. 光敏色素互作因子参与生长素调控的植物生长发育[J]. 生物技术通报, 2022, 38(10): 29-33. |
[6] | 唐嘉城, 梁毅珉, 马葭思, 彭桂香, 谭志远. 百香果内生细菌多样性及促生长特性[J]. 生物技术通报, 2022, 38(1): 86-97. |
[7] | 冯寒骞, 李超. 生长素信号转导研究进展[J]. 生物技术通报, 2018, 34(7): 24-30. |
[8] | 窦悦, 刘美彤, 卢安娜, 吴佳洁, 王群青, 胥倩. 中介体亚基MED25调控植物激素信号转导的研究进展[J]. 生物技术通报, 2018, 34(7): 40-47. |
[9] | 侯鹏飞,贾振华,宋水山,. 生长素和细胞分裂素调控植物根和微生物互作的研究进展[J]. 生物技术通报, 2017, 33(7): 1-6. |
[10] | 孙帆, 罗朝兵, 周燕妮, 张凌云. 青杄生长素抑制蛋白基因PwARP-1的克隆及表达分析[J]. 生物技术通报, 2014, 0(4): 64-70. |
[11] | 李静;崔继哲;弭晓菊;. 生长素与植物逆境胁迫关系的研究进展[J]. , 2012, 0(06): 13-17. |
[12] | 任怡怡;戴绍军;刘炜;. 生长素的运输及其在信号转导及植物发育中的作用[J]. , 2012, 0(03): 9-16. |
[13] | 于胜楠;崔继哲;. PIN蛋白在生长素极性运输中的作用[J]. , 2009, 0(03): 20-24. |
[14] | 文春描;徐正君;蔡平钟;高方远;任光俊;. ABP1:生长素结合蛋白中的超级明星[J]. , 2007, 0(03): 16-21. |
[15] | 刘进平;. 生长素受体与信号转导机制研究进展[J]. , 2007, 0(03): 22-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||