[1] Flanagan PM, Rd KR, Sayre MH, et al.A mediator required for activation of RNA polymerase II transcription in vitro[J]. Nature, 1991, 350(6317):436-438. [2] Mathur S, Vyas S, Kapoor S, et al.The mediator complex in plants:structure, phylogeny, and expression profiling of representative genes in a dicot(Arabidopsis)and a Monocot(Rice)during reproduction and abiotic stress[J]. Plant Physiology, 2011, 157(4):1609-27. [3] Allen BL, Taatjes DJ.The mediator complex:a central integrator of transcription[J]. Nature Reviews Molecular Cell Biology, 2015, 16(3):155-166. [4] Samanta S, Thakur JK.Importance of mediator complex in the regulation and integration of diverse signaling pathways in plants[J]. Front Plant Sci, 2015, 6(7):388-394. [5] Poss Z C, Ebmeier CC, Taatjes DJ.The mediator complex and transcription regulation[J]. Critical Reviews in Biochemistry & Molecular Biology, 2013, 48(6):575-608. [6] Bäckström S, Elfving N, Nilsson R, et al.Purification of a plant mediator from Arabidopsis thaliana identifies PFT1 as the Med25 subunit[J]. Molecular Cell, 2007, 26(5):717. [7] Cerdán PD, Chory J.Regulation of flowering time by light quality [J]. Nature, 2003, 423(6942):881. [8] Autran D, Jonak C, Belcram K, et al.Cell numbers and leaf development in Arabidopsis:a functional analysis of the STRUWWELPETER gene[J]. Embo Journal, 2002, 21(22):6036. [9] Wang W, Chen X.HUA ENHANCER3 reveals a role for a cyclin-dependent protein kinase in thespecification of floral organ identity in Arabidopsis[J]. Development, 2004, 131(13):3147. [10] Zheng W, Zhai Q, Sun J, et al.Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis[J]. Plant Physiology, 2006, 141(4):1400-1413. [11] Seguelaarnaud M, Smith C, Uribe MC, et al.The Mediator complex subunits MED25/PFT1 and MED8 are required for transcriptional responses to changes in cell wall arabinose composition and glucose treatment in Arabidopsis thaliana[J]. BMC Plant Biology, 2015, 15(1):1-13. [12] Elfving N, Davoine C, Benlloch R, et al.The Arabidopsis thaliana Med25 mediator subunit integrates environmental cues to control plant development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(20):8245. [13] Kidd BN, Edgar CI, Kumar KK, et al.The mediator complex subunit PFT1 is a key regulator of jasmonate-dependent defense in Arabidopsis.[J]. Plant Cell, 2009, 21(8):2237-2252. [14] Xu, Li.Control of final organ size by Mediator complex subunit 25 in Arabidopsis thaliana[J]. Development, 2011, 138(20):4545-4554. [15] Xu R, Li Y.The Mediator complex subunit 8 regulates organ size in Arabidopsis thaliana[J]. Plant Signaling & Behavior, 2012, 7(2):182-183. [16] Kazan K.The Multitalented MEDIATOR25[J]. Front Plant Sci, 2017, 8. [17] Kidd B N, Cahill D M, Manners J M, et al.Diverse roles of the Mediator complex in plants.[J]. Seminars in Cell & Developmental Biology, 2011, 22(7):741-748. [18] Larsson M, Uvell H, Sandström J, et al.Functional studies of the yeast med5, med15 and med16 mediator tail subunits.[J]. PLoS One, 2013, 8(8):e73137. [19] Çevik V, Kidd B N, Zhang P, et al.MEDIATOR25 acts as an integrative hub for the regulation of jasmonate-responsive gene expression in Arabidopsis[J]. Plant Physiology, 2012, 160(1):541-555. [20] Fernández-Calvo P, Solano R.The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. Plant Cell, 2011, 23(2):701-15. [21] Zhang F, Yao J, Ke J, et al.Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525(7568):269-73. [22] Rival P, Press M O, Bale J, et al.The conserved PFT1 tandem repeat is crucial for proper flowering in Arabidopsis thaliana[J]. Genetics, 2014, 198(2):747-754. [23] Yang Y, Li L, Qu L J.Plant Mediator complex and its critical functions in transcription regulation[J]. Journal of Integrative Plant Biology, 2016, 58(2):106-118. [24] Dolan W L, Chapple C. Conservation and divergence of mediator structure and function:insights from plants[J]. Plant & Cell Physiology, 2016, 58(1):pcw176. [25] Kazan, Kemal.Diverse roles of jasmonates and ethylene in abiotic stress tolerance[J]. Trends in Plant Science, 2015, 20(4):219-229. [26] Kemal Kazan, John M.Manners. MYC2:the master in action[J]. Molecular Plant, 2013, 6(3):686-703. [27] Kazan, Kemal, John M. JAZ repressors and the orchestration of phytohormone crosstalk[J]. Trends in Plant Science, 2012, 17(1):22-31. [28] Boter M, Ruízrivero O, Abdeen A, et al.Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis[J]. Genes Dev, 2004, 18(13):1577-1591. [29] Lorenzo O, Chico JM, Sánchez-Serrano JJ, et al.JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16(7):1938. [30] Dombrecht B, Xue GP, Sprague SJ, et al.MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis[J]. Plant Cell, 2007, 19(7):2225-2245. [31] Chen R, Jiang H, Li L, et al.The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. Plant Cell, 2012, 24(7):2898. [32] Ou, Bin, Yin, et al. A high-throughput screening system for Arabidopsis transcription factors and its application to Med25-dependent transcriptional regulation[J]. Molecular Plant, 2011, 4(3):546-555. [33] Riechmann JL, Heard J, Martin G, et al.Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499):2105. [34] Gong W, Shen YP, Ma LG, et al.Genome-wide ORFeome cloning and analysis of Arabidopsis transcription factor genes[J]. Plant Physiology, 2004, 135(2):773-82. [35] Nakano T, Suzuki K, Fujimura T, et al.Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411. [36] Kidd BN, Aitken EA, Schenk PM, et al.Plant mediator:mediating the jasmonate response[J]. Plant Signal Behav, 2010, 5(5):718-720. [37] Zhang F, Ke J, Zhang L, et al.Structural insights into alternative splicing-mediated desensitization of jasmonate signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(7):1720. [38] Zhu Y, Mengiste T.CYCLIN-DEPENDENT KINASE8 differentially regulates plant immunity to fungal pathogens through kinase-dependent and -independent functions in Arabidopsis[J]. Plant Cell, 2014, 26(10):4149-4170. [39] Sela D, Buxdorf K, Shi J X, et al.Overexpression of AtSHN1/WIN1 provokes unique defense responses[J]. PLoS One, 2013, 8(7):e70146. [40] 黄维娜, 康玉凡. 乙烯在幼苗根生长发育中调控作用的研究进展[J]. 中国农学通报, 2013(12):6-12. [41] Rayagonzález J, Ortizcastro R, Ruízherrera L F, et al.PHYTOCHROME AND FLOWERING TIME1/MEDIATOR25 regulates lateral root formation via auxin signaling in Arabidopsis[J]. Plant Physiology, 2014, 165(2):880. [42] Casimiro I, Beeckman T, Graham N, et al.Dissecting Arabidopsis, lateral root development[J]. Trends in Plant Science, 2003, 8(4):165-71. [43] Hirota A, Kato T, Fukaki H, et al.The auxin-regulated AP2/EREBP Gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis[J]. Plant Cell, 2007, 19(7):2156. [44] Casimiro I, Marchant A, Bhalerao RP, et al.Auxin transport promotes Arabidopsis lateral root initiation.[J]. Plant Cell, 2001, 13(4):843. [45] Himanen K, Boucheron E, Vanneste S, et al.Auxin-mediated cell cycle activation during early lateral root initiation[J]. Plant Cell, 2002, 14(10):2339-2351. [46] Ito J, Fukaki H, Onoda M, et al.Auxin-dependent compositional change in mediator in ARF7- and ARF19-mediated transcription.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23):6562. [47] Muto H, Watahiki MK, Nakamoto D, et al.Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14[J]. Plant Physiology, 2007, 144(1):187-96. [48] Bourras S, Mcnally KE, Ben-David R, et al.Multiple avirulence loci and allele-specific effector recognition control the Pm3 race-specific resistance of wheat to powdery mildew[J]. Plant Cell, 2015, 27(10):2991. [49] Parlange F, Roffler S, Menardo F, et al.Genetic and molecular characterization of a locus involved in avirulence of Blumeria graminis, f. sp. tritici, on wheat Pm3, resistance alleles[J]. Fungal Genetics & Biology, 2015, 82:181-192. [50] Duan X, Wang X, Fu Y, et al.TaEIL1, a wheat homologue of AtEIN3, acts as a negative regulator in the wheat-stripe rust fungus interaction[J]. Molecular Plant Pathology, 2013, 14(7):728. [51] Liu J, Zhang T, Jia J, et al.The wheat mediator subunit TaMED25 interacts with the transcription factor TaEIL1 to negatively regulate disease resistance against powdery mildew[J]. Plant Physiology, 2016, 170(3):1799. [52] Kazan K, Manners JM.Linking development to defense:auxin in plant-pathogen interactions[J]. Trends in Plant Science, 2009, 14(7):373-382. [53] Carlos L, Romera FJ, García MJ, et al.Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Front Plant Sci, 2015, 6(155):1056. [54] Brumbarova, Tzvetina, Bauer, et al. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends in Plant Science, 2015, 20(2):124-133. [55] Yang Y, Ou B, Zhang J, et al.The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25[J]. Plant Journal, 2014, 77(6):838-51. [56] Zhang Y, Wu H, Wang N, et al.Mediator subunit 16 functions in the regulation of iron uptake gene expression in Arabidopsis[J]. New Phytologist, 2014, 203(3):770-83. [57] Bu QY, Li HM, Zhao QZ, et al.The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. Plant Physiology, 2009, 150(1):463-481. [58] Li H, Jiang H, Bu Q, et al.The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response[J]. Plant Physiology, 2011, 156(2):550-563. [59] Lopez-Molina L, Mongrand S, Chua NH.A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8):4782-4787. [60] Lopezmolina L, Mongrand S, Mclachlin DT, et al.ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination[J]. Plant Journal, 2002, 32(3):317-328. [61] Li J, Zhang K, Meng Y, et al.Jasmonic acid/Ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor[J]. Plant Journal for Cell & Molecular Biology, 2018, 95(3):444-457. [62] Campos L, Lisón P, López-Gresa MP, et al.Transgenic tomato plants overexpressing tyramine N-hydroxycinnamoyltransferase exhibit elevated hydroxycinnamic acid amide levels and enhanced resistance to Pseudomonas syringae[J]. Mol Plant Microbe Interact, 2014, 27(10):1159-1169. [63] Atsushi M, Kenji M, Takeshi S, et al.Acquired immunity of transgenic torenia plants overexpressing agmatine coumaroyltransferase to pathogens and herbivore pests[J]. Scientific Reports, 2012, 2(689):689. [64] Canet J V, Dobã³N A, Tornero P. Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid[J]. Plant Cell, 2012, 24(10):4220-4235. [65] Zhang X, Wang C, Zhang Y, et al.The Arabidopsis mediator complex subunit16 positively regulates salicylate-mediated systemic acquired resistance and jasmonate/ethylene-induced defense pathways[J]. Plant Cell, 2012, 24(10):4294. [66] Caillaud M, Asai S, Rallapalli G, et al.A downy mildew effector attenuates salicylic acid-triggered immunity in arabidopsis by interacting with the host mediator complex[J]. PLoS Biology, 2013, 11(12):e1001732. [67] Wang Y, Hu Z, Zhang J, et al.Silencing SlMED18, tomato mediator subunit 18 gene, restricts internode elongation and leaf expansion[J]. Scientific Reports, 2018, 8(1):3285. |