生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 44-52.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0800
李红叶1(), 陈立佼1, 刘明丽1,3, 郭天杰1,3, 王道平2, 潘映红2, 赵明1,3()
收稿日期:
2020-06-30
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
李红叶,女,硕士研究生,研究方向:茶树病害;E-mail:基金资助:
LI Hong-ye1(), CHEN Li-jiao1, LIU Ming-li1,3, GUO Tian-jie1,3, WANG Dao-ping2, PAN Ying-hong2, ZHAO Ming1,3()
Received:
2020-06-30
Published:
2021-03-26
Online:
2021-04-02
摘要:
单宁酶(Tannase,EC 3.1.1.20)能水解单宁中的酯键和羧酚酸键,产生没食子酸以及对应醇,在食品、饮料、饲料、制药、医药、化妆品等各类工业中应用广泛,也在普洱茶发酵中具有重要作用。从普洱茶发酵中分离的黑曲霉菌株PU001中克隆得到单宁酶基因Tan2,并连接到表达载体pCold-Ⅰ构建BL21-pCold Ⅰ原核冷诱导表达系统,转化至感受态大肠杆菌BL21中,SDS-PAGE与质谱鉴定均表明单宁酶Tan 2表达成功,旨在为进一步研究该酶在普洱茶发酵中的作用机制以及其他领域的应用奠定基础。
李红叶, 陈立佼, 刘明丽, 郭天杰, 王道平, 潘映红, 赵明. 黑曲霉单宁酶基因Tan2克隆与表达[J]. 生物技术通报, 2021, 37(3): 44-52.
LI Hong-ye, CHEN Li-jiao, LIU Ming-li, GUO Tian-jie, WANG Dao-ping, PAN Ying-hong, ZHAO Ming. Cloning and Expression of Tannase Gene Tan2 from Aspergillus niger[J]. Biotechnology Bulletin, 2021, 37(3): 44-52.
Accession | Blast results(NCBI) | ||
---|---|---|---|
Description | Organism | Identity | |
XP_001401809.1 | tannase | Aspergillus niger CBS 513.88 | 100% |
EHA20668.1 | hypothetical protein | Aspergillus niger ATCC 1015 | 99.83% |
GCB23703.1 | tannase | Aspergillus awamori | 99.65% |
RDK47096.1 | tannase and feruloyl esterase | Aspergillus phoenicis ATCC 13157 | 99.48% |
XP_026632695.1 | tannase and feruloyl esterase | Aspergillus welwitschiae | 99.30% |
XP_025515125.1 | tannase and feruloyl esterase | Aspergillus piperis CBS 112811 | 97.91% |
XP_025567423.1 | tannase and feruloyl esterase | Aspergillus vadensis CBS 113365 | 97.91% |
OJZ87444.1 | hypothetical protein | Aspergillus luchuensis CBS 106.47 | 97.74% |
GAA82877.1 | tannase and feruloyl esterase | Aspergillus luchuensis IFO 4308 | 97.56% |
OJJ71084.1 | hypothetical protein | Aspergillus brasiliensis CBS 101740 | 97.56% |
表1 Tan2基因比对结果
Accession | Blast results(NCBI) | ||
---|---|---|---|
Description | Organism | Identity | |
XP_001401809.1 | tannase | Aspergillus niger CBS 513.88 | 100% |
EHA20668.1 | hypothetical protein | Aspergillus niger ATCC 1015 | 99.83% |
GCB23703.1 | tannase | Aspergillus awamori | 99.65% |
RDK47096.1 | tannase and feruloyl esterase | Aspergillus phoenicis ATCC 13157 | 99.48% |
XP_026632695.1 | tannase and feruloyl esterase | Aspergillus welwitschiae | 99.30% |
XP_025515125.1 | tannase and feruloyl esterase | Aspergillus piperis CBS 112811 | 97.91% |
XP_025567423.1 | tannase and feruloyl esterase | Aspergillus vadensis CBS 113365 | 97.91% |
OJZ87444.1 | hypothetical protein | Aspergillus luchuensis CBS 106.47 | 97.74% |
GAA82877.1 | tannase and feruloyl esterase | Aspergillus luchuensis IFO 4308 | 97.56% |
OJJ71084.1 | hypothetical protein | Aspergillus brasiliensis CBS 101740 | 97.56% |
Name | Accession | Description | Sum PEP Score | Coverage | # Peptides |
---|---|---|---|---|---|
Tannase Tan2 | A0A0G3ZA16 | Carboxylic ester hydrolase OS=Aspergillus niger | 343.26 | 42.52 | 17 |
表2 表达蛋白质谱鉴定结果
Name | Accession | Description | Sum PEP Score | Coverage | # Peptides |
---|---|---|---|---|---|
Tannase Tan2 | A0A0G3ZA16 | Carboxylic ester hydrolase OS=Aspergillus niger | 343.26 | 42.52 | 17 |
单宁酶/(U·mL-1) | ΔGA/(mg·mL-1) | PG/(mg·mL-1) | |
---|---|---|---|
样品管 | 1.02±0.06 | 0.0034±0.0002 | 0.0486±0.00115 |
空白管 | — | — | 0.0545±0.00309 |
对照管 | — | — | 0.0527±0.00274 |
表3 纯化单宁酶催化PG和GA的含量变化
单宁酶/(U·mL-1) | ΔGA/(mg·mL-1) | PG/(mg·mL-1) | |
---|---|---|---|
样品管 | 1.02±0.06 | 0.0034±0.0002 | 0.0486±0.00115 |
空白管 | — | — | 0.0545±0.00309 |
对照管 | — | — | 0.0527±0.00274 |
[1] |
Ni H, Chen F, Jiang ZD, et al. Biotransformation of tea catechins using Aspergillus niger tannase prepared by solid state fermentation on tea byproduct[J]. LWT - Food Science and Technology, 2015,60(2):1206-1213.
doi: 10.1016/j.lwt.2014.09.010 URL |
[2] |
Ichikawa K, Shiono Y, Shintani T, et al. Efficient production of recombinant tannase in Aspergillus oryzae using an improved glucoamylase gene promoter[J]. Journal of Bioscience and Bioengineering, 2020,129(2):150-154.
doi: S1389-1723(19)30599-7 pmid: 31492608 |
[3] |
Dhiman S, Mukherjee G, Singh AK. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins:a review[J]. Int Microbiol, 2018,21(4):175-195.
doi: 10.1007/s10123-018-0027-9 pmid: 30810902 |
[4] |
Baik JH, Shin K, Park Y, et al. Biotransformation of catechin and extraction of active polysaccharide from green tea leaves via simultaneous treatment with tannase and pectinase[J]. Journal of the Science of Food and Agriculture, 2014,95(11):2337-2344.
doi: 10.1002/jsfa.6955 URL pmid: 25307474 |
[5] |
Liu ML, Xie HF, Ma Y, et al. High performance liquid chromatography and metabolomics analysis of tannase metabolism of gallic acid and gallates in tea leaves[J]. Journal of Agricultural and Food Chemistry, 2020,68(17):1-40.
doi: 10.1021/acs.jafc.9b07943 URL |
[6] | 李梦迪, 张志萌, 董自星, 等. 黑曲霉单宁酶TahA的克隆表达和酶学特性解析[J]. 食品与发酵工业, 2018,44(11):19-25. |
Li MD, Zhang ZM, Dong ZX, et al. Cloning, expression and biochemical characterization of tannase TahA from Aspergillus niger[J]. Food and Fermentation Industries, 2018,44(11):15-21. | |
[7] |
段颖异, 陈洪章. 固态发酵基质的三相结构变化对其传递性质的影响[J]. 化工学报, 2012,63(4):1204-1210.
doi: 10.3969/j.issn.0438-1157.2012.04.030 URL |
Duan YY, Chen HZ. Effect of three-phase structure of solid-state fermentation substrates on its transfer properties[J]. CIESC Journal, 2012,63(4):1204-1210. | |
[8] | Mónica CG, Luis VRD, Nagamani B, et al. Biotechnological advances and challenges of tannase:an overview[J]. Food & Bioprocess Technology, 2011,5(2):445-459. |
[9] | Krensky AM, Clayberger C. Granulysin:a novel host defense molecule[J]. Am J Transplant, 2005,8(5):1789-1792. |
[10] |
Iwamoto K, Tsuruta H, Nishitaini Y, et al. Identification and cloning of a gene encoding tannase(tannin acylhydrolase)from Lactobacillus plantarum ATCC 14917T[J]. Systematic and Applied Microbiology, 2008,31(4):269-277.
doi: 10.1016/j.syapm.2008.05.004 URL pmid: 18653299 |
[11] |
Zhang S, Cao Y, Cheng H. Expression of Aspergillus niger N5-5 in E. coli and purification and identification of products[J]. Saudi Journal of Biological Sciences, 2017,24(8):1842-1848.
doi: 10.1016/j.sjbs.2017.11.025 URL pmid: 29551933 |
[12] | 郑重谊, 资云, 张冬雪, 等. 黑曲霉WB-1固态发酵产单宁酶的研究[J]. 化学与生物工程, 2016,32(1):37-39. |
Zheng CY, Zi Y, Zhang DX, et al. Study on the production of tannase from Aspergillus niger WB-1 by solid state fermentation[J]. Chemistry and Bioengineering, 2016,32(1):37-39. | |
[13] | 季爱兵, 龚婉莹, 彭文书, 等. 普洱茶中微生物研究进展[J]. 现代农业科技, 2016(21):253-255. |
Ji AB, Gong WY, Peng WS, et al. Research progress of microorganism in pu-erh tea[J]. Modern Agricultural Sciences and Technology, 2016(21):253-255. | |
[14] | 周才碧, 张敏星, 蒋陈凯, 等. 黑曲霉及其与普洱茶品质关系研究进展[J]. 微生物学杂志, 2014,34(2):88-91. |
Zhou CB, Zhang MX, Jiang CK, et al. Advanced in Aspergillus niger & its relationship with quality of puer tea[J]. Journal of Microbiology, 2014,34(2):88-91. | |
[15] | 高琛, 朱继新, 黄婧, 等. 从黑茶中分离和筛选产单宁酶菌株[J]. 微生物学杂志, 2015,35(5):28-35. |
Gao C, Zhu JX, Huang J, et al. Isolation & screening of tannase producing strains from Chinese dark tea[J]. Journal of Microbiology, 2015,35(5):28-35. | |
[16] | 邓军, 马少敏, 王荣辉. 单宁酶及其在茶饮料中的应用[J]. 轻工科技, 2009,25(3):6-7. |
Deng J, Ma SM, Wang RH. Tannase and its application in tea beverage[J]. Guangxi Journal of Light Industry, 2009,25(3):6-7. | |
[17] | 王征, 谭周进, 杨虹琦. 单宁酶活力测定方法的研究[J]. 生物技术, 2000,10(6):40-42. |
Wang Z, Tan ZJ, Yang HQ. Study on the determination of tannase activity[J]. Biotechnology, 2000,10(6):40-42. | |
[18] | 岳苗苗. 单宁酶基因在黑曲霉中的同源表达研究[D]. 哈尔滨:东北农业大学, 2014. |
Yue MM. Homologous expression of tannase gene in the Aspergillus niger[D]. Harbin:Northeast Agricultural University, 2014. | |
[19] | Wu M, Peng X, Wen H, et al. Expression, purification, crystallization and preliminary X-ray analysis of tannase from Lactobacillus plantarum[J]. Acta Crystallographica Sect F Struct Biol Cyst Commun, 2013,69(4):456-459. |
[20] |
Iwamoto K, Tsuruta H, Nishitaini Y, et al. Identification and cloning of a gene encoding tannase(tannin acylhydrolase)from Lactobacillus plantarum ATCC 14917T[J]. Systematic & Applied Microbiology, 2008,31(4):269-277.
doi: 10.1016/j.syapm.2008.05.004 URL pmid: 18653299 |
[21] |
Zhong XF, Peng LS, Zheng SL, et al. Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris[J]. Protein Expr Purif, 2004,36(2):165-169.
doi: 10.1016/j.pep.2004.04.016 URL pmid: 15249037 |
[22] |
Erik B, Rüdiger B, Hans-Peter M, et al. Atan1p - an extracellular tannase from the dimorphic yeast Arxula adeninivorans:molecular cloning of the ATAN1 gene and characterization of the recombinant enzyme[J]. Yeast, 2009,26(6):323-337.
doi: 10.1002/yea.1669 URL pmid: 19387973 |
[23] |
Yao J, Chen QL, Shen AX, et al. A novel feruloyl esterase from a soil metagenomic library with tannase activity[J]. Journal of Molecular Catalysis B Enzymatic, 2013,95(11):55-61.
doi: 10.1016/j.molcatb.2013.05.026 URL |
[24] | 黄小凤, 韦宇拓, 韦传东, 等. 单宁酶基因在黑曲霉ST31中的克隆与表达[J]. 中国生物工程杂志, 2005,25(9):74-77. |
Huang XF, Wei YT, Wei CD, et al. Cloning and expressing of tannase gene from Aspergillus oryzae in Aspergillus niger ST31[J]. China Biotechnology, 2005,25(9):74-77. | |
[25] | 马凯, 胡红霞, 于婧, 等. 双酶切和同源重组方法构建 pMIR-reporter载体的比较[J]. 中国病原生物学杂志, 2015,10(6):495-499. |
Ma K, Hu HX, Yu J, et al. Comparison of the construction of a pMIR-reporter vector using conventional double enzyme restriction and recombination[J]. Journal of Pathogen Biology, 2015,10(6):495-499. | |
[26] |
Li M, Wang X, Cao Y, et al. Strength comparison between cold-inducible promoters of Arabidopsis cor15a and cor15b genes in potato and tobacco[J]. Plant Physiol Biochem, 2013,71:77-86.
doi: 10.1016/j.plaphy.2013.06.021 URL pmid: 23886924 |
[1] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[2] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[3] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[4] | 陈浩宇, 徐瑞涛, 程志翔, 高强, 张健. H2O2对黑曲霉氧化胁迫机理的研究[J]. 生物技术通报, 2018, 34(4): 201-207. |
[5] | 魏姜勉, 鲁雷震, 焦国宝, 刘家扬, 陆隽鹤. 黑曲霉发酵菌渣对臧红T的吸附研究[J]. 生物技术通报, 2017, 33(10): 191-198. |
[6] | 朱永瑞, 曾柏全, 曾磊, 刘辉. 黑曲霉C112纤维二糖酶基因的克隆与生物信息学分析[J]. 生物技术通报, 2016, 32(2): 116-122. |
[7] | 张亮, 花尔并, 王华明. 粉红黏帚霉糖化酶基因的克隆、表达及酶学性质分析[J]. 生物技术通报, 2015, 31(7): 193-200. |
[8] | 张谦, 王剑英, 林智, 贾佳, 郭宏涛. 华根霉脂肪酶在黑曲霉中的重组表达研究[J]. 生物技术通报, 2015, 31(3): 165-170. |
[9] | 张晓立, 郑小梅, 满云, 罗虎, 于建东, 郑平, 刘浩, 孙际宾. 黑曲霉柠檬酸工业菌株原生质体制备与转化[J]. 生物技术通报, 2015, 31(3): 171-177. |
[10] | 张谦,贾佳,林智,杨晓锋,郭宏涛,王剑英,Carol Sze Ki Lin. 产脂肪酶黑曲霉摇瓶发酵条件优化研究[J]. 生物技术通报, 2015, 31(12): 227-233. |
[11] | 张欢, 曹焱鑫, 蒋林, 王晓明, 刘齐, 董晓莹, 寇巍. 黑曲霉(AS0006)产纤维素酶的纯化研究[J]. 生物技术通报, 2014, 0(6): 187-191. |
[12] | 刘瑜,李丕武. 黑曲霉葡萄糖氧化酶高产基因工程菌研究进展[J]. 生物技术通报, 2013, 0(7): 12-19. |
[13] | 张文丽,于寒松,朴春红,胡鑫,王舒婷,胡耀辉. 一株高产糖化酶生产菌的筛选与鉴定[J]. 生物技术通报, 2013, 0(7): 131-135. |
[14] | 于海玲, 李树伟, 王华明. 葡萄穗霉中β-葡萄糖苷酶的基因克隆、表达及酶学性质分析 [J]. 生物技术通报, 2013, 0(6): 128-132. |
[15] | 王红霞, 王华明, 张大龙, 罗成. 葡萄穗霉木聚糖酶XYA6205 在黑曲霉中的表达及酶学特性分析[J]. 生物技术通报, 2013, 0(2): 130-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||