[1] |
Makarova KS, Koonin EV. Annotation and classification of CRISPR-cas systems[J]. Methods Mol Biol, 2015, 1311:47-75.
|
[2] |
Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37:67-78.
doi: 10.1016/j.mib.2017.05.008
URL
|
[3] |
Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR-Cas systems:a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2):67-83.
doi: 10.1038/s41579-019-0299-x
URL
|
[4] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
doi: 10.1126/science.1225829
URL
|
[5] |
Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
doi: 10.1016/j.cell.2015.09.038
pmid: 26422227
|
[6] |
Strecker J, Jones S, Koopal B, et al. Engineering of CRISPR-Cas12b for human genome editing[J]. Nat Commun, 2019, 10(1):212.
doi: 10.1038/s41467-018-08224-4
URL
|
[7] |
Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array[J]. Nat Biotechnol, 2017, 35(1):31-34.
doi: 10.1038/nbt.3737
pmid: 27918548
|
[8] |
Hur JK, Kim K, Been KW, et al. Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins[J]. Nat Biotechnol, 2016, 34(8):807-808.
doi: 10.1038/nbt.3596
URL
|
[9] |
Endo A, Masafumi M, Kaya H, et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida[J]. Sci Rep, 2016, 6:38169.
doi: 10.1038/srep38169
URL
|
[10] |
Tang X, Lowder LG, Zhang T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants[J]. Nat Plants, 2017, 3:17018.
doi: 10.1038/nplants.2017.18
pmid: 28211909
|
[11] |
Wang M, Mao Y, Lu Y, et al. Multiplex gene editing in rice using the CRISPR-Cpf1 system[J]. Mol Plant, 2017, 7:1011-1013.
|
[12] |
Kim H, Kim ST, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing[J]. Nat Commun, 2017, 8:14406.
doi: 10.1038/ncomms14406
URL
|
[13] |
Kim D, Lim K, Kim ST, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases[J]. Nat Biotechnol, 2017, 35(5):475-480.
doi: 10.1038/nbt.3852
URL
|
[14] |
Van Vu T, Sivankalyani V, Kim EJ, et al. Homology-directed repair using next-generation CRISPR/Cpf1-geminiviral replicons in tomato[J]. bioRxiv, 2019: 521419.
|
[15] |
Malzahn AA, Tang X, Lee K, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis[J]. BMC Biol, 2019, 17(1):9.
doi: 10.1186/s12915-019-0629-5
pmid: 30704461
|
[16] |
Li J, Xu R, Qin R, et al. Genome editing mediated by SpCas9 variants with broad non-canonical PAM compatibility in plants[J]. Mol Plant, 2021, 14(2):352-360.
doi: 10.1016/j.molp.2020.12.017
URL
|
[17] |
Zhou H, Liu B, Weeks DP, et al. Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice[J]. Nucleic Acids Res, 2014, 42(17):10903-10914.
doi: 10.1093/nar/gku806
URL
|
[18] |
Ren B, Yan F, Kuang YJ, et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice[J]. Sci China Life Sci, 2017, 60(5):516-519.
doi: 10.1007/s11427-016-0406-x
URL
|
[19] |
Jiang W, Zhou H, Bi H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, Sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20):e188.
doi: 10.1093/nar/gkt780
URL
|
[20] |
Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.)mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J]. The Plant Journal, 1994, 6(2):271-282.
doi: 10.1046/j.1365-313X.1994.6020271.x
URL
|
[21] |
Moon SB, Lee JM, Kang JG, et al. Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang[J]. Nat Commun, 2018, 9(1):3651.
doi: 10.1038/s41467-018-06129-w
pmid: 30194297
|
[22] |
Li X, Wang Y, Liu Y, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36(4):324-327.
doi: 10.1038/nbt.4102
URL
|