生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 248-254.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0075
收稿日期:
2021-01-18
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
蒋钰琪,女,硕士研究生,研究方向:水稻稻粒黑粉病致病机制;E-mail: 基金资助:
JIANG Yu-qi(), SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun()
Received:
2021-01-18
Published:
2021-09-26
Online:
2021-10-25
摘要:
稻粒黑粉病主要危害水稻不育系花器官,在世界杂交水稻种植区广泛发生,已成为限制杂交稻制种产量的主要病害之一。研究其病原菌与寄主互作机制,可对挖掘抗稻粒黑粉病基因资源及抗病分子育种提供重要依据。本文对稻粒黑粉病菌侵染过程、致病相关基因及生物学途径、水稻响应稻粒黑粉病菌侵染等方面的研究进展进行了综述,并提出了未来的重点研究方向。现有研究表明,稻粒黑粉病菌能够侵染柱头的外露部分引起发病。脂肪酸代谢和自噬作用是稻粒黑粉病菌成功侵染寄主的关键生物学途径;全基因组测序组装完成及候选效应蛋白的预测,为稻粒黑粉病菌致病相关基因研究奠定了基础。此外,稻粒黑粉病菌抗病不育系资源的报道,为抗病基因挖掘及抗病机制解析提供了重要的抗源材料。进一步解析稻粒黑粉病菌致病机制,利用抗病资源挖掘潜在的抗病基因,并应用于抗病分子育种是下一步研究的重点方向。
蒋钰琪, 舒新月, 郑爱萍, 王爱军. 水稻与稻粒黑粉病菌互作分子机制研究进展[J]. 生物技术通报, 2021, 37(9): 248-254.
JIANG Yu-qi, SHU Xin-yue, ZHENG Ai-ping, WANG Ai-jun. Recent Progress in Molecular Mechanism of Interaction Between Rice and Tilletia horrida[J]. Biotechnology Bulletin, 2021, 37(9): 248-254.
图2 水稻稻粒黑粉病菌形态特征 A:生长3 d的菌落形态;B:生长15 d的菌落形态;C:冬孢子形态; D:次生小孢子形态;E:细胞核染色[6,23]
Fig.2 Morphological characteristics of rice T. horrida A: Colony morphology of rice kernel smut after 3 d on PSA. B: Colony morphology of rice kernel smut after 15 d on PSA. C: Winter spore morphology. D: Morphology of secondary microspores. E: single nuclear mycelium stained with 4', 6-diamidino-2-phenylindole (DAPI) after culture on PDA medium for 5 d, observed using a fluorescence microscope[6,23]
[1] | 蔡良俊, 徐敬洪, 沈超, 等. 杂交水稻新组合蓉7优528在成都的高产栽培技术[J]. 杂交水稻, 2019, 34(6):44-46. |
Cai LJ, Xu JH, Shen C, et al. High-yielding cultivation techniques of new hybrid rice combination Rong 7 You 528 in Chengdu[J]. Hybrid Rice, 2019, 34(6):44-46. | |
[2] | 沈超, 徐敬洪, 蔡良俊, 等. 高产优质杂交水稻新品种蓉7优523的选育及应用[J]. 种子, 2019, 38(9):115-117. |
Shen C, Xu JH, Cai LJ, et al. Breeding and application of new hybrid rice variety Rong 7 You 523 with high yield and high quality[J]. Seed, 2019, 38(9):115-117. | |
[3] | 潘学贤, 程开禄, 黄富, 等. 杂交稻制种粒黑粉病的侵染源及发生规律[J]. 植物保护学报, 1995, 22(4):289-296. |
Pan XX, Cheng KL, Huang F, et al. Studies on source of inoculum of kernel smut and its occurrence on hybridization rice[J]. J Of plant Prot, 1995, 22(4):289-296. | |
[4] | Biswas A. Kernel smut disease of rice:current status and future challenges[J]. Frontiers in Ecology and the Environment, 2003, 21:336-351. |
[5] | R VG, Webster RK, Gunnell PS. Compendium of rice diseases[J]. Mycologia, 1992, 84(6):953. |
[6] | 王爱军, 江波, 富蓉, 等. 水稻稻粒黑粉病病原菌鉴定及致病性测定[J]. 植物病理学报, 2018, 48(3):297-304. |
Wang AJ, Jiang B, Fu R, et al. Identification and pathogenicity of pathogen causing kernel smut on rice[J]. Acta Phytopathol Sin, 2018, 48(3):297-304. | |
[7] |
Carris LM, Castlebury LA, Goates BJ. Nonsystemic bunt fungi—— Tilletia indica and T. horrida:a review of history, systematics, and biology[J]. Annu Rev Phytopathol, 2006, 44:113-133.
pmid: 16480336 |
[8] | Rogerson CT. Illustrated genera of smut fungi[J]. Brittonia, 1988, 40(1):107. |
[9] | 戴雷, 张道环, 于立繁, 等. 水稻粒黑粉病研究进展[J]. 中国农学通报, 2011, 27(12):261-265. |
Dai L, Zhang DH, Yu LF, et al. Advance in rice kernel smut[J]. Chin Agric Sci Bull, 2011, 27(12):261-265. | |
[10] | Singh RA, Pavgi MS. Development of sorus in kernel bunt of rice[J]. Riso, 1973, 22(3):243-250. |
[11] | 欧SH. 水稻病害[M]. 北京: 农业出版社, 1981. |
Ou SH. Rice Diseases[M]. Beijing: Agricultural Press, 1981. | |
[12] |
Brooks SA, Anders MM, Yeater KM. Effect of cultural management practices on the severity of false smut and kernel smut of rice[J]. Plant Dis, 2009, 93(11):1202-1208.
doi: 10.1094/PDIS-93-11-1202 URL |
[13] | Whitney NG. Effect of fungicide applications on kernel smut of rice[J]. Plant Disease, 1977, 61(5):379-381. |
[14] |
Takahashi Y. On Ustilago virens Cooke and a New Species of Tilletia parasitic on Rice-plant[J]. Shokubutsugaku Zasshi, 1896, 10(109):en16-en20.
doi: 10.15281/jplantres1887.10.109_16 URL |
[15] | 朱建清, 周开达, 陶家凤. 稻粒黑粉菌侵染水稻不育系的细胞学研究[J]. 西南农业学报, 1998, 11(1):67-72. |
Zhu JQ, Zhou KD, Tao JF. Cytological study on Neovossia horrida infection in male sterile lines of rice[J]. Southwest China J Agric Sci, 1998, 11(1):67-72. | |
[16] | 陶家凤, 周开达, 朱建清. 稻粒黑粉菌对水稻不育系的侵染过程[J]. 西南农业学报, 1998, 11(2):68-72. |
Tao JF, Zhou KD, Zhu JQ. Infection process of Neovossia horrida in male sterile rice[J]. Southwest China J Agric Sci, 1998, 11(2):68-72. | |
[17] | 邵见阳, 张祥喜, 林姗姗. 稻粒黑粉菌生物学特性研究[J]. 江西农业学报, 1997, 9(4):27-32. |
Shao JY, Zhang XX, Lin SS. Study on biological characteristics of Neovossia horrida[J]. Acta Agric Jiangxi, 1997, 9(4):27-32. | |
[18] | Templeton GE. Local infection of rice florets by the rice kernel smut organism, Tilletia horrida[J]. Phytopathology, 1961, 51(2):131-132. |
[19] | 左震东. 水稻研讨论文集[M]. 合肥: 中国科学技术大学出版社, 1990. |
Zuo ZD. Proceedings of the Rice Research Symposium[M]. Hefei: University of Science and Technology of China Press, 1990. | |
[20] | 滕彬, 李光尧, 腾久生, 等. 培矮64S系列组合制种稻粒黑粉病发生原因分析及防治对策[J]. 种子, 2002, 21(6):81,83. |
Teng B, Li GY, Teng JS, et al. Analysis of the causes and control measures of rice kernel smut in combination with Peiai 64S series[J]. Seed, 2002, 21(6):81,83. | |
[21] | 刘慧. 我国稻粒黑粉病的研究进展[J]. 江西植保, 2008, 31(1):3-6. |
Liu H. Research advance on Neovossia horrida in rice[J]. Jiangxi Plant Prot, 2008, 31(1):3-6. | |
[22] | 王中康, 欧阳秩. 稻粒黑粉菌生物学特性研究[J]. 西南农业大学学报, 1989, 11(4):331-335. |
Wang ZK, Ouyang Z. Studies on the pathogbnic biology of the kernel smut of rice[J]. J Southwest Agric Univ, 1989, 11(4):331-335. | |
[23] |
Wang A, Pang L, Wang N, et al. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics[J]. Sci Rep, 2018, 8(1):15413.
doi: 10.1038/s41598-018-33752-w URL |
[24] | Wang N, Ai P, Tang YF, et al. Draft genome sequence of the rice kernel smut Tilletia horrida strain QB-1[J]. Genome Announc, 2015, 3(3):e00621-e00615. |
[25] | Kumagai T, Ishii T, Terai G, et al. Genome sequence of Ustilaginoidea virens IPU010, a rice pathogenic fungus causing false smut[J]. Genome Announc, 2016, 4(3):e00306-16. |
[26] | 舒新月, 江波, 马丽, 等. 不同侵染时间点稻粒黑粉病菌的转录组分析[J]. 草业学报, 2020, 29(9):190-202. |
Shu XY, Jiang B, Ma L, et al. Transcriptome analysis of Tilletia horrida at different infection time points[J]. Acta Prataculturae Sin, 2020, 29(9):190-202. | |
[27] | 韩彦卿, 韩渊怀, 等. 水稻幼穗与Ustilaginoidea virens互作早期的转录组分析[J]. 植物病理学报, 2019, 49(3):296-305. |
Han YQ, Han YH, et al. Transcriptomic analysis of early interaction between rice young spikelets and Ustilaginoidea virens[J]. Acta Phytopathol Sin, 2019, 49(3):296-305. | |
[28] |
Zhang N, Yang J, Fang A, et al. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region[J]. Mol Plant Pathol, 2020, 21(4):445-459.
doi: 10.1111/mpp.12894 pmid: 32087618 |
[29] |
Wang D, Tian L, et al. Functional analyses of small secreted cysteine-rich proteins identified candidate effectors in Verticillium dahlia[J]. Mol Plant Pathol, 2020, 21(5):667-685.
doi: 10.1111/mpp.12921 pmid: 32314529 |
[30] |
Wang A, Pan L, Niu X, et al. Comparative secretome analysis of different smut fungi and identification of plant cell death-inducing secreted proteins from Tilletia horrida[J]. BMC Plant Biol, 2019, 19(1):360.
doi: 10.1186/s12870-019-1924-6 URL |
[31] | 盘林秀, 王娜, 王爱军, 等. 稻粒黑粉病菌实时荧光定量PCR内参基因筛选[J]. 植物病理学报, 2018, 48(5):640-647. |
Pan LX, Wang N, Wang AJ, et al. Selection of reference genes for quantitative real-time PCR in Tilletia horrida[J]. Acta Phytopathol Sin, 2018, 48(5):640-647. | |
[32] |
Chen Y, Yang X, et al. Simple and rapid detection of Tilletia horri-da causing rice kernel smut in rice seeds[J]. Sci Rep, 2016, 6:33258.
doi: 10.1038/srep33258 pmid: 27624858 |
[33] | 王爱军, 殷得所, 富蓉, 等. 78个水稻不育系对稻粒黑粉病的抗性评价[J]. 植物病理学报, 2018, 48(2):207-212. |
Wang AJ, Yin DS, Fu R, et al. Evaluation of resistance to rice kernel smut in seventy-eight species of rice sterile lines[J]. Acta Phytopathol Sin, 2018, 48(2):207-212. | |
[34] |
Zhang K, Li YJ, Li TJ, et al. Pathogenicity genes in Ustilaginoidea virens revealed by a predicted protein-protein interaction network[J]. J Proteome Res, 2017, 16(3):1193-1206.
doi: 10.1021/acs.jproteome.6b00720 pmid: 28099032 |
[35] |
Wang A, Zha Z, et al. Comparative transcriptome analysis of Tilletia horrida infection in resistant and susceptible rice(Oryza sativa L.)male sterile lines reveals potential candidate genes and resistance mechanisms[J]. Genomics, 2020, 112(6):5214-5226.
doi: 10.1016/j.ygeno.2020.09.036 URL |
[36] |
Jain M, Tyagi AK, Khurana JP. Molecular characterization and differential expression of cytokinin-responsive type-A response regulators in rice(Oryza sativa)[J]. BMC Plant Biol, 2006, 6:1.
doi: 10.1186/1471-2229-6-1 URL |
[37] |
Zhao H, Ma B, et al. The GDSL lipase MHZ11 modulates ethylene signaling in rice roots[J]. Plant Cell, 2020, 32(5):1626-1643.
doi: 10.1105/tpc.19.00840 URL |
[38] |
Wang Q, Zhang W, Yin Z, et al. Rice CONSTITUTIVE TRIPLE-RESPONSE2 is involved in the ethylene-receptor signalling and regulation of various aspects of rice growth and development[J]. J Exp Bot, 2013, 64(16):4863-4875.
doi: 10.1093/jxb/ert272 pmid: 24006427 |
[39] |
Zhang Y, Zhang K, Fang A, et al. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics[J]. Nat Commun, 2014, 5:3849.
doi: 10.1038/ncomms4849 pmid: 24846013 |
[40] |
Song JH, Wei W, Lv B, et al. Rice false smut fungus hijacks the rice nutrients supply by blocking and mimicking the fertilization of rice ovary[J]. Environ Microbiol, 2016, 18(11):3840-3849.
doi: 10.1111/1462-2920.13343 URL |
[41] |
Jones JDG, Dangl JL. The plant immune system[J]. Nature, 2006, 444(7117):323-329.
doi: 10.1038/nature05286 URL |
[42] |
Fan J, Guo XY, Li L, et al. Infection of Ustilaginoidea virens intercepts rice seed formation but activates grain-filling-related genes[J]. J Integr Plant Biol, 2015, 57(6):577-590.
doi: 10.1111/jipb.v57.6 URL |
[43] |
Dhua U, Dhua SR, Sahu RK. Precise disease severity assessment for false smut disease of rice[J]. J Phytopathol, 2015, 163(11/12):931-940.
doi: 10.1111/jph.12395 URL |
[44] |
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea[J]. Genes Dev, 1996, 10(21):2696-2706.
doi: 10.1101/gad.10.21.2696 URL |
[45] |
Mayorga ME, Gold SE. A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence[J]. Mol Microbiol, 1999, 34(3):485-497.
pmid: 10564490 |
[46] | 刘连盟, 王玲, 黄雯雯, 等. 水稻稻曲病菌G蛋白β亚基基因的克隆、表达与序列分析[J]. 中国水稻科学, 2010, 24(4):353-359. |
Liu LM, Wang L, Huang WW, et al. Cloning, expression and sequence analysis of G protein β subunit gene of rice false smut pathogen Ustilaginoidea virens[J]. Chin J Rice Sci, 2010, 24(4):353-359. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[4] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[5] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[8] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[9] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[10] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[11] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[12] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[13] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[14] | 吕宇婧, 吴丹丹, 孔春艳, 杨宇, 龚明. 小桐子XTH基因家族和与之互作的miRNAs的全基因组鉴定及其在低温适应中的作用[J]. 生物技术通报, 2023, 39(2): 147-160. |
[15] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||