生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 45-53.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0603
蒋欢1,2(), 马江山1,2(), 曾柏全1(), 张良波2, 李培旺2,3
收稿日期:
2021-05-08
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
蒋欢,女,硕士,研究方向:生物资源加工与利用;E-mail:基金资助:
JIANG Huan1,2(), MA Jiang-shan1,2(), ZENG Bai-quan1(), ZHANG Liang-bo2, LI Pei-wang2,3
Received:
2021-05-08
Published:
2022-10-26
Online:
2022-11-11
摘要:
粗甘油是生物柴油工业生产中的主要副产物,通过微生物发酵直接将其转化成高值化学品1, 3-丙二醇,是其绿色高值化利用的有效途径。对微生物代谢甘油产1, 3-丙二醇途径及关键酶、粗甘油杂质对微生物发酵影响、不同微生物直接发酵粗甘油生产1, 3-丙二醇以及混菌发酵粗甘油提高1, 3-丙二醇产率等方面的最新研究进展进行了综述,旨在为直接发酵粗甘油生产1, 3-丙二醇的工程菌株开发及其工业化应用提供参考。
蒋欢, 马江山, 曾柏全, 张良波, 李培旺. 粗甘油发酵生产1, 3-丙二醇的研究进展[J]. 生物技术通报, 2022, 38(10): 45-53.
JIANG Huan, MA Jiang-shan, ZENG Bai-quan, ZHANG Liang-bo, LI Pei-wang. Research Progress in 1, 3-Propanediol Production by Fermenting Crude Glycerol[J]. Biotechnology Bulletin, 2022, 38(10): 45-53.
菌株或菌群 Strain or microbial consortium | 底物 Substrate | 产率 Yield | 产量Concent-ration/(g·L-1) | 生产强度Produc- tivity/(g·L-1·h-1) | 发酵方式 Fermentation | 文献 Reference |
---|---|---|---|---|---|---|
K. pneumoniae ATCC 8724 | 粗甘油 | 0.65 mol/mol | 20 | - | 补料发酵 | [ |
K. pneumoniae 2e | 粗甘油 | 0.64 mol/mol | 10.28 | - | 分批发酵 | [ |
K. pneumoniae ATCC 200721 ∆ldhA | 粗甘油 | - | 81.1 | 3.38 | 补料发酵 | [ |
C. butyricum AKR102a | 粗甘油 | - | 76.2 | 2.3 | 补料发酵 | [ |
C. beijerinckii A1 | 粗甘油+玉米浆 | 0.54 g/g | 20.0 | 0.71 | 分批发酵 | [ |
C. pasteurianum MNO6 | 粗甘油 | 0.25 mol/mol | 1.21 | 分批发酵 | [ | |
L. brevis N1E9.3.3 | 粗甘油+葡萄糖 | 0.83 g/g | 18.6 | 0.45 | 分批发酵 | [ |
L. reuteri HR2 | 粗甘油 | 0.51 mol/mol | 9.1 | - | 分批发酵 | [ |
菌群(梭菌属、乳酸杆菌属和肠杆菌属占据95%) | 粗甘油(无长链脂肪酸) | 0.44 g/g | - | - | 分批发酵 | [ |
菌群C2-2M | 粗甘油 | 0.45 g/g | 57.86 | 5.55 | 分批发酵 | [ |
菌群DL38 | 粗甘油 | 0.63 mol/mol | 81.4 | 0.99 | 分批发酵 | [ |
菌群DL38-BH | 粗甘油 | 0.60 mol/mol | 31.17 | - | 分批发酵 | [ |
表1 不同菌株或菌群利用粗甘油为底物发酵生产1,3-PDO
Table 1 Production of 1,3-PDO by different strain or microbial consortium using crude glycerol substrate
菌株或菌群 Strain or microbial consortium | 底物 Substrate | 产率 Yield | 产量Concent-ration/(g·L-1) | 生产强度Produc- tivity/(g·L-1·h-1) | 发酵方式 Fermentation | 文献 Reference |
---|---|---|---|---|---|---|
K. pneumoniae ATCC 8724 | 粗甘油 | 0.65 mol/mol | 20 | - | 补料发酵 | [ |
K. pneumoniae 2e | 粗甘油 | 0.64 mol/mol | 10.28 | - | 分批发酵 | [ |
K. pneumoniae ATCC 200721 ∆ldhA | 粗甘油 | - | 81.1 | 3.38 | 补料发酵 | [ |
C. butyricum AKR102a | 粗甘油 | - | 76.2 | 2.3 | 补料发酵 | [ |
C. beijerinckii A1 | 粗甘油+玉米浆 | 0.54 g/g | 20.0 | 0.71 | 分批发酵 | [ |
C. pasteurianum MNO6 | 粗甘油 | 0.25 mol/mol | 1.21 | 分批发酵 | [ | |
L. brevis N1E9.3.3 | 粗甘油+葡萄糖 | 0.83 g/g | 18.6 | 0.45 | 分批发酵 | [ |
L. reuteri HR2 | 粗甘油 | 0.51 mol/mol | 9.1 | - | 分批发酵 | [ |
菌群(梭菌属、乳酸杆菌属和肠杆菌属占据95%) | 粗甘油(无长链脂肪酸) | 0.44 g/g | - | - | 分批发酵 | [ |
菌群C2-2M | 粗甘油 | 0.45 g/g | 57.86 | 5.55 | 分批发酵 | [ |
菌群DL38 | 粗甘油 | 0.63 mol/mol | 81.4 | 0.99 | 分批发酵 | [ |
菌群DL38-BH | 粗甘油 | 0.60 mol/mol | 31.17 | - | 分批发酵 | [ |
[1] |
He Q, McNutt J, Yang J. Utilization of the residual glycerol from biodiesel production for renewable energy generation[J]. Renew Sustain Energy Rev, 2017, 71:63-76.
doi: 10.1016/j.rser.2016.12.110 URL |
[2] |
Sivasankaran C, Ramanujam PK, Balasubramanian B, et al. Recent progress on transforming crude glycerol into high value chemicals:a critical review[J]. Biofuels, 2019, 10(3):309-314.
doi: 10.1080/17597269.2016.1174018 URL |
[3] |
Hu SJ, Luo XL, Wan CX, et al. Characterization of crude glycerol from biodiesel plants[J]. J Agric Food Chem, 2012, 60(23):5915-5921.
doi: 10.1021/jf3008629 URL |
[4] |
Luo XL, Ge XM, Cui SQ, et al. Value-added processing of crude glycerol into chemicals and polymers[J]. Bioresour Technol, 2016, 215:144-154.
doi: 10.1016/j.biortech.2016.03.042 URL |
[5] |
Ardi MS, Aroua MK, Hashim NA. Progress, prospect and challenges in glycerol purification process:a review[J]. Renew Sustain Energy Rev, 2015, 42:1164-1173.
doi: 10.1016/j.rser.2014.10.091 URL |
[6] |
Chol CG, Dhabhai R, Dalai AK, et al. Purification of crude glycerol derived from biodiesel production process:experimental studies and techno-economic analyses[J]. Fuel Process Technol, 2018, 178:78-87.
doi: 10.1016/j.fuproc.2018.05.023 URL |
[7] |
Kumar LR, Yellapu SK, Tyagi RD, et al. A review on variation in crude glycerol composition, bio-valorization of crude and purified glycerol as carbon source for lipid production[J]. Bioresour Technol, 2019, 293:122155.
doi: 10.1016/j.biortech.2019.122155 URL |
[8] |
Ayoub M, Abdullah AZ. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry[J]. Renew Sustain Energy Rev, 2012, 16(5):2671-2686.
doi: 10.1016/j.rser.2012.01.054 URL |
[9] |
Kholif AE. Glycerol use in dairy diets:a systemic review[J]. Anim Nutr, 2019, 5(3):209-216.
doi: 10.1016/j.aninu.2019.06.002 pmid: 31528721 |
[10] |
García-Torreiro M, López-Abelairas M, Lu-Chau TA, et al. Fungal pretreatment of agricultural residues for bioethanol production[J]. Ind Crops Prod, 2016, 89:486-492.
doi: 10.1016/j.indcrop.2016.05.036 URL |
[11] | 杨云, 殷冉, 裴建军. 微生物发酵法制备1, 3-丙二醇的研究进展[J]. 化工时刊, 2017, 31(12):24-28. |
Yang Y, Yin R, Pei JJ. Progress in microbial fermentation of 1, 3-propanediol[J]. Chem Ind Times, 2017, 31(12):24-28. | |
[12] | Kaur J, Sarma AK, Jha MK, et al. Valorisation of crude glycerol to value-added products:perspectives of process technology, economics and environmental issues[J]. Biotechnol Rep(Amst), 2020, 27:e00487. |
[13] |
Bauer F, Hulteberg C. Is there a future in glycerol as a feedstock in the production of biofuels and biochemicals?[J]. Biofuels Bioprod Biorefining, 2013, 7(1):43-51.
doi: 10.1002/bbb.1370 URL |
[14] | Garlapati VK, Shankar U, Budhiraja A. Bioconversion technologies of crude glycerol to value added industrial products[J]. Biotechnol Rep(Amst), 2015, 9:9-14. |
[15] |
Monteiro MR, Kugelmeier CL, Pinheiro RS, et al. Glycerol from biodiesel production:technological paths for sustainability[J]. Renew Sustain Energy Rev, 2018, 88:109-122.
doi: 10.1016/j.rser.2018.02.019 URL |
[16] |
Supaporn P, Yeom SH. Statistical optimization of 1, 3-propanediol(1, 3-PD)production from crude glycerol by considering four objectives:1, 3-PD concentration, yield, selectivity, and productivity[J]. Appl Biochem Biotechnol, 2018, 186(3):644-661.
doi: 10.1007/s12010-018-2766-7 URL |
[17] |
Sun YQ, Shen JT, Yan L, et al. Advances in bioconversion of glycerol to 1, 3-propanediol:prospects and challenges[J]. Process Biochem, 2018, 71:134-146.
doi: 10.1016/j.procbio.2018.05.009 URL |
[18] | 齐向辉, 齐一琳, 员君华, 等. 微生物发酵粗甘油生成1, 3-丙二醇的研究进展[J]. 食品安全质量检测学报, 2015, 6(10):3923-3927. |
Qi XH, Qi YL, Yuan JH, et al. Research progress on the microbial fermentation of 1, 3-propandiol from crude glycerol[J]. J Food Saf Qual, 2015, 6(10):3923-3927. | |
[19] |
Debuissy T, Sangwan P, Pollet E, et al. Study on the structure-properties relationship of biodegradable and biobased aliphatic copolyesters based on 1, 3-propanediol, 1, 4-butanediol, succinic and adipic acids[J]. Polymer, 2017, 122:105-116.
doi: 10.1016/j.polymer.2017.06.045 URL |
[20] |
da Silva Ruy AD, de Brito Alves RM, Reis Hewer TL, et al. Catalysts for glycerol hydrogenolysis to 1, 3-propanediol:a review of chemical routes and market[J]. Catal Today, 2021, 381:243-253.
doi: 10.1016/j.cattod.2020.06.035 URL |
[21] |
Lee CS, Aroua MK, Daud WMAW, et al. A review:conversion of bioglycerol into 1, 3-propanediol via biological and chemical method[J]. Renew Sustain Energy Rev, 2015, 42:963-972.
doi: 10.1016/j.rser.2014.10.033 URL |
[22] |
Samul D, Leja K, Grajek W. Impurities of crude glycerol and their effect on metabolite production[J]. Ann Microbiol, 2014, 64(3):891-898.
doi: 10.1007/s13213-013-0767-x URL |
[23] |
Vivek N, Sindhu R, Madhavan A, et al. Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate - Metabolic aspects, challenges and possibilities:an overview[J]. Bioresour Technol, 2017, 239:507-517.
doi: 10.1016/j.biortech.2017.05.056 URL |
[24] |
Bothwell KM, Krasňan V, Lorenzini F, et al. Utilizing crude waste glycerol in the biorefinery:glycerol gels for in situ substrate delivery to whole cell biocatalysts[J]. ACS Sustain Chem Eng, 2019, 7(11):9948-9956.
doi: 10.1021/acssuschemeng.9b00891 |
[25] |
Kumar V, Park S. Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source[J]. Biotechnol Adv, 2018, 36(1):150-167.
doi: 10.1016/j.biotechadv.2017.10.004 URL |
[26] |
Metsoviti M, Paraskevaidi K, Koutinas A, et al. Production of 1, 3-propanediol, 2, 3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media[J]. Process Biochem, 2012, 47(12):1872-1882.
doi: 10.1016/j.procbio.2012.06.011 URL |
[27] |
Wang XL, Zhou JJ, Shen JT, et al. Sequential fed-batch fermentation of 1, 3-propanediol from glycerol by Clostridium butyricum DL07[J]. Appl Microbiol Biotechnol, 2020, 104(21):9179-9191.
doi: 10.1007/s00253-020-10931-2 URL |
[28] | Gallardo R, Alves M, Rodrigues LR. Influence of nutritional and operational parameters on the production of butanol or 1, 3-propanediol from glycerol by a mutant Clostridium pasteurianum[J]. Nature Biotechnol, 2017, 34:59-67. |
[29] |
Guo YL, Dai L, Xin B, et al. 1, 3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL[J]. Bioresour Technol, 2017, 233:406-412.
doi: 10.1016/j.biortech.2017.02.116 URL |
[30] |
Zabed HM, Zhang YF, Guo Q, et al. Co-biosynthesis of 3-hydroxypropionic acid and 1, 3-propanediol by a newly isolated Lactobacillus reuteri strain during whole cell biotransformation of glycerol[J]. J Clean Prod, 2019, 226:432-442.
doi: 10.1016/j.jclepro.2019.04.071 URL |
[31] |
Vivek N, Pandey A, Binod P. Biological valorization of pure and crude glycerol into 1, 3-propanediol using a novel isolate Lactobacillus brevis N1E9. 3. 3[J]. Bioresour Technol, 2016, 213:222-230.
doi: 10.1016/j.biortech.2016.02.020 URL |
[32] |
Pflügl S, Marx H, Mattanovich D, et al. Heading for an economic industrial upgrading of crude glycerol from biodiesel production to 1, 3-propanediol by Lactobacillus diolivorans[J]. Bioresour Technol, 2014, 152:499-504.
doi: 10.1016/j.biortech.2013.11.041 URL |
[33] |
Russmayer H, Egermeier M, Kalemasi D, et al. Spotlight on biodiversity of microbial cell factories for glycerol conversion[J]. Biotechnol Adv, 2019, 37(6):107395.
doi: 10.1016/j.biotechadv.2019.05.001 URL |
[34] |
Jiang W, Wang SZ, Wang YP, et al. Key enzymes catalyzing glycerol to 1, 3-propanediol[J]. Biotechnol Biofuels, 2016, 9:57.
doi: 10.1186/s13068-016-0473-6 pmid: 26966462 |
[35] |
Doi Y. Glycerol metabolism and its regulation in lactic acid bacteria[J]. Appl Microbiol Biotechnol, 2019, 103(13):5079-5093.
doi: 10.1007/s00253-019-09830-y pmid: 31069487 |
[36] |
Wang Y, Tao F, Xu P. Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2, 3-butanediol formation in Klebsiella pneumoniae[J]. J Biol Chem, 2014, 289(9):6080-6090.
doi: 10.1074/jbc.M113.525535 pmid: 24429283 |
[37] |
Nasir A, Ashok S, Shim JY, et al. Recent progress in the understanding and engineering of coenzyme B12-dependent glycerol dehydratase[J]. Front Bioeng Biotechnol, 2020, 8:500867.
doi: 10.3389/fbioe.2020.500867 URL |
[38] | 王飞, 邓文颖, 杨泽茜, 等. 1, 3-丙二醇生物法生产中关键酶的研究进展[J]. 生物技术, 2013, 23(1):93-96. |
Wang F, Deng WY, Yang ZX, et al. Advances on the key enzymes of microbial production of 1, 3-propanediol[J]. Biotechnology, 2013, 23(1):93-96. | |
[39] |
Tan HW, Abdul Aziz AR, Aroua MK. Glycerol production and its applications as a raw material:a review[J]. Renew Sustain Energy Rev, 2013, 27:118-127.
doi: 10.1016/j.rser.2013.06.035 URL |
[40] |
Luo CB, Li YQ, Liao H, et al. De novo transcriptome assembly of the bamboo snout beetle Cyrtotrachelus buqueti reveals ability to degrade lignocellulose of bamboo feedstock[J]. Biotechnol Biofuels, 2018, 11:292.
doi: 10.1186/s13068-018-1291-9 URL |
[41] |
Chatzifragkou A, Dietz D, Komaitis M, et al. Effect of biodiesel-derived waste glycerol impurities on biomass and 1, 3-propanediol production of Clostridium butyricum VPI 1718[J]. Biotechnol Bioeng, 2010, 107(1):76-84.
doi: 10.1002/bit.22767 pmid: 20506102 |
[42] |
Moon C, Ahn JH, Kim SW, et al. Effect of biodiesel-derived raw glycerol on 1, 3-propanediol production by different microorganisms[J]. Appl Biochem Biotechnol, 2010, 161(1/2/3/4/5/6/7/8):502-510.
doi: 10.1007/s12010-009-8859-6 URL |
[43] |
Ito T, Nakashimada Y, Senba K, et al. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process[J]. J Biosci Bioeng, 2005, 100(3):260-265.
pmid: 16243274 |
[44] |
Venkataramanan KP, Boatman JJ, Kurniawan Y, et al. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013[J]. Appl Microbiol Biotechnol, 2012, 93(3):1325-1335.
doi: 10.1007/s00253-011-3766-5 pmid: 22202963 |
[45] |
Laura M, Monica T, Dan-Cristian V. The effect of crude glycerol impurities on 1, 3-propanediol biosynthesis by Klebsiella pneumoniae DSMZ 2026[J]. Renew Energy, 2020, 153:1418-1427.
doi: 10.1016/j.renene.2020.02.108 URL |
[46] | Ma JS, Jiang H, Hector SB, et al. Adaptability of Klebsiella pneumoniae 2e, a newly isolated 1, 3-propanediol-producing strain, to crude glycerol as revealed by genomic profiling[J]. Appl Environ Microbiol, 2019, 85(10):e00254-e00219. |
[47] |
Celińska E. Klebsiella spp as a 1, 3-propanediol producer:the metabolic engineering approach[J]. Crit Rev Biotechnol, 2012, 32(3):274-288.
doi: 10.3109/07388551.2011.616859 pmid: 21995522 |
[48] |
Yang XG, Kim DS, Choi HS, et al. Repeated batch production of 1, 3-propanediol from biodiesel derived waste glycerol by Klebsiella pneumoniae[J]. Chem Eng J, 2017, 314:660-669.
doi: 10.1016/j.cej.2016.12.029 URL |
[49] |
Lee JH, Jung MY, Oh MK. High-yield production of 1, 3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae[J]. Biotechnol Biofuels, 2018, 11:104.
doi: 10.1186/s13068-018-1100-5 pmid: 29657579 |
[50] |
Oh BR, Lee SM, Heo SY, et al. Efficient production of 1, 3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2, 3-butanediol deficient mutant of Klebsiella pneumoniae[J]. Microb Cell Fact, 2018, 17(1):92.
doi: 10.1186/s12934-018-0921-z URL |
[51] |
Clomburg JM, Gonzalez R. Metabolic engineering of Escherichia coli for the production of 1, 2-propanediol from glycerol[J]. Biotechnol Bioeng, 2011, 108(4):867-879.
doi: 10.1002/bit.22993 pmid: 21404260 |
[52] |
Wilkens E, Ringel AK, Hortig D, et al. High-level production of 1, 3-propanediol from crude glycerol by Clostridium butyricum AKR102a[J]. Appl Microbiol Biotechnol, 2012, 93(3):1057-1063.
doi: 10.1007/s00253-011-3595-6 pmid: 21972131 |
[53] |
Wischral D, Zhang JZ, Cheng C, et al. Production of 1, 3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor:process optimization and metabolic engineering[J]. Bioresour Technol, 2016, 212:100-110.
doi: 10.1016/j.biortech.2016.04.020 URL |
[54] |
Jensen TØ, Kvist T, Mikkelsen MJ, et al. Production of 1, 3-PDO and butanol by a mutant strain of Clostridium pasteurianum with increased tolerance towards crude glycerol[J]. AMB Express, 2012, 2(1):44.
doi: 10.1186/2191-0855-2-44 URL |
[55] |
O’Brien JR, Raynaud C, Croux C, et al. Insight into the mechanism of the B12-independent glycerol dehydratase from Clostridium butyricum:preliminary biochemical and structural characterization[J]. Biochemistry, 2004, 43(16):4635-4645.
doi: 10.1021/bi035930k URL |
[56] |
Kubiak P, Leja K, Myszka K, et al. Physiological predisposition of various Clostridium species to synthetize 1, 3-propanediol from glycerol[J]. Process Biochem, 2012, 47(9):1308-1319.
doi: 10.1016/j.procbio.2012.05.012 URL |
[57] |
Grahame DAS, Kang TS, Khan NH, et al. Alkaline conditions stimulate the production of 1, 3-propanediol in Lactobacillus panis PM1 through shifting metabolic pathways[J]. World J Microbiol Biotechnol, 2013, 29(7):1207-1215.
doi: 10.1007/s11274-013-1283-7 URL |
[58] |
Vaidyanathan H, Kandasamy V, Gopal Ramakrishnan G, et al. Glycerol conversion to 1, 3-Propanediol is enhanced by the expression of a heterologous alcohol dehydrogenase gene in Lactobacillus reuteri[J]. AMB Express, 2011, 1(1):37.
doi: 10.1186/2191-0855-1-37 pmid: 22053913 |
[59] |
Pflügl S, Marx H, Mattanovich D, et al. Genetic engineering of Lactobacillus diolivorans[J]. FEMS Microbiol Lett, 2013, 344(2):152-158.
doi: 10.1111/1574-6968.12168 URL |
[60] |
Pan CZ, Tan GYA, Ge LY, et al. Two-stage microbial conversion of crude glycerol to 1, 3-propanediol and polyhydroxyalkanoates after pretreatment[J]. J Environ Manage, 2019, 232:615-624.
doi: 10.1016/j.jenvman.2018.11.118 URL |
[61] |
Zhou JJ, Shen JT, Wang XL, et al. Stability and oscillatory behavior of microbial consortium in continuous conversion of crude glycerol to 1, 3-propanediol[J]. Appl Microbiol Biotechnol, 2018, 102(19):8291-8305.
doi: 10.1007/s00253-018-9244-6 URL |
[62] |
Jiang LL, Liu HF, Mu Y, et al. High tolerance to glycerol and high production of 1, 3-propanediol in batch fermentations by microbial consortium from marine sludge[J]. Eng Life Sci, 2017, 17(6):635-644.
doi: 10.1002/elsc.201600215 pmid: 32624809 |
[63] |
Gallardo R, Faria C, Rodrigues LR, et al. Anaerobic granular sludge as a biocatalyst for 1, 3-propanediol production from glycerol in continuous bioreactors[J]. Bioresour Technol, 2014, 155:28-33.
doi: 10.1016/j.biortech.2013.12.008 URL |
[64] |
Jiang LL, Dai JY, Sun YQ, et al. The effects of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethanesulfonate on the production of 1, 3-propanediol from crude glycerol by microbial consortium[J]. Bioprocess Biosyst Eng, 2018, 41(8):1079-1088.
doi: 10.1007/s00449-018-1937-9 URL |
[1] | 霍明月, 张鸽, 苏玉龙, 李兴, 张海波, 峥嵘, 刘好宝. 一株耐受高浓度葡萄糖且产乙偶姻菌株的筛选及产物鉴定[J]. 生物技术通报, 2020, 36(8): 53-60. |
[2] | 刘岩, 王慧, 史吉平, 赵志军, 丛丽娜. 微生物法生产L-丝氨酸代谢工程研究进展[J]. 生物技术通报, 2015, 31(8): 44-49. |
[3] | 王升,李丕武,刘佃磊,李以明,林晶晶. 利用发酵法生产氨基葡萄糖的研究进展[J]. 生物技术通报, 2014, 0(1): 68-74. |
[4] | 戚娜;朱利民;. 5′-核苷酸的合成方法比较[J]. , 2006, 0(S1): 242-245. |
[5] | 孙国凤. 公布了利用重组植物生产海藻糖的成果[J]. , 1995, 0(01): 15-15. |
[6] | 王颖. 日本的生物技术产品降低纸浆和纸张的处理费用[J]. , 1991, 0(06): 23-24. |
[7] | 邓永鸿;. 发酵性能的改进[J]. , 1990, 0(07): 20-20. |
[8] | 邓永鸿;. DNA纯化方法的改进[J]. , 1988, 0(04): 10-10. |
[9] | 邓永鸿;. 用于干扰素β的新的纯化试剂[J]. , 1986, 0(03): 12-13. |
[10] | 郭殿瑞;. CELLTECH公司可提供抗-γ-干扰素[J]. , 1985, 0(01): 127-127. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||