生物技术通报 ›› 2022, Vol. 38 ›› Issue (10): 34-44.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1558
山琦1(), 贾惠舒1, 姚文博1, 刘伟灿1(), 李海燕2()
收稿日期:
2021-12-16
出版日期:
2022-10-26
发布日期:
2022-11-11
作者简介:
山琦,女,硕士研究生,研究方向:植物分子生物学;E-mail:基金资助:
SHAN Qi1(), JIA Hui-shu1, YAO Wen-bo1, LIU Wei-can1(), LI Hai-yan2()
Received:
2021-12-16
Published:
2022-10-26
Online:
2022-11-11
摘要:
miR396是植物中一种保守的microRNA,生长调节因子(growth regulatory factor,GRF)基因已在多个物种中被证实是其作用的主要靶基因。目前的研究报道显示,miR396介导的靶基因GRF调控途径(miR396-GRF),已在利用分子育种技术进行植物品种改良,及提升植物组织材料再生效率方面展露出了诱人的应用潜力。本文分析了miR396和GRF基因的序列特点;阐明了miR396-GRF模块的具体互作模式;并着重介绍了近年来miR396-GRF模块在调控植物生长发育、逆境胁迫响应和影响植物组织再生效率方面的生物学功能研究进展,也收集了miR396-GRF模块提高植物生物量及作物产量、改善植物逆境胁迫耐受能力及提高植物材料在遗传转化过程中再生效率方面的研究案例;最后,总结了目前关于miR396-GRF模块发挥生物学功能的分子机制研究概况,旨为进一步深入研究miR396-GRF途径提供思路和参考。
山琦, 贾惠舒, 姚文博, 刘伟灿, 李海燕. 植物miR396-GRF模块的生物学功能及其潜在应用价值[J]. 生物技术通报, 2022, 38(10): 34-44.
SHAN Qi, JIA Hui-shu, YAO Wen-bo, LIU Wei-can, LI Hai-yan. Research Progress in Biological Functions of miR396-GRF Module in Plants and Its Potential Application Values[J]. Biotechnology Bulletin, 2022, 38(10): 34-44.
图1 不同植物物种中miR396基因家族成熟区序列比对分析 A和B:植物体中的大多mat-miR396序列主要与拟南芥中的ath-miR396a-5p和ath-miR396b-3p两种成熟序列形式相同,ath-miR396a-5p和ath-miR396b-3p二者序列长度一致,但在末位具有一个差异碱基;C:植物中上述两种序列形式之外的其它mat-miR396序列比对结果发现各mat-miR396序列之间存在1个或多个碱基的差异
Fig.1 Alignment analysis of mature region sequences of miR396 gene family in different plant species A and B:The most mat-miR396 sequences in plants are mainly the same as the 2 mature sequence forms of ath-miR396a-5p and ath-miR396b-5p in Arabidopsis,ath-miR396a-5p and ath-miR396b-3p have the same sequence length,but they have a different base at the end. C:The alignment of other mat-miR396 sequences except above 2 sequences in plants revealed that there is one base difference or multiple base differences between mat-miR396 sequences
图2 不同植物物种中GRF蛋白家族氨基酸序列的保守结构域比对分析 不同植物中的GRF蛋白家族氨基酸序列比对分析发现,GRF蛋白的N端普遍包含QLQ和WRC两个保守功能结构域。A:GRF蛋白的QLQ结构域,在QLQ结构域中,除了保守的Gln-Leu-GLn(Q-L-Q)氨基酸外,还含有疏水性的酸性氨基酸残基 F/Phe、Y/Tyr、L/Leu、E/Glu和P/Pro等,或是含有其他理化性质类似的氨基酸;B:GRF蛋白的WRC结构域,在WRC结构域中,含有保守的Trp-Arg-Cys(W-R-C)氨基酸残基,并且含有由3个C/Cys和1个H/His组成的C3H motif。紧随C3H motif区域之后,有1个保守的“RSRK-VE区”,该区域对应的核苷酸序列即miR396在GRF基因上的作用靶点
Fig.2 Alignment analysis of the conserved domains of GRF protein family amino acid sequences in different plant species According to the amino acid sequence comparison analysis of GRF protein family in different plant species,it can be found that the N-terminal of GRF protein contained two conservative protein domain,QLQ and WRC. A:QLQ domain of GRF protein. In the QLQ domain,there are conserved Gln-Leu-GLn(Q-L-Q)amino acids and hydrophobic residues such as F/Phe,Y/Tyr,L/Leu,E/Glu and P/Pro,or other amino acids with similar physical and chemical properties. B:WRC domain of GRF protein. In the WRC domain,there are conserved Trp-Arg-Cys(W-R-C)amino acid residues and C3H motifs consisting of three C/Cys and an H/His. It is important to note that there is a conserved “RSRK-VE” region following the C3H motif region,its coded nucleotide sequence is the targets site of miR396 on the GRF gene
图3 不同植物物种中miR396在GRF基因序列上的作用位点及剪切位点 A:miR396在GRF基因上的作用位点,在GRF蛋白的WRC结构域中,有一个保守的“RSRK-VE”区,该区域在基因组中对应的核苷酸序列大多为高度保守的“CGTTCAAGAAAGCNTGTGGAA”序列;B:miR396在GRF基因的mRNA序列上的剪切位点,miR396在保守位点的“CGUUCAAGAA”和“AGCNUGUGGAA”之间剪切GRF基因的mRNA序列,进而负调控GRF基因的表达
Fig.3 Action sites and splicing sites of miR396 on GRF gene sequences in different plant species A:The action site of miR396 on GRF gene. In the WRC domain of GRF protein,there is a conserved “RSRK-VE ”region,their corresponding nucleotide sequences in the genome are mostly highly conserved “CGTTCAAGAACNTGTGAA” sequences. B:Splice site of miR396 on the mRNA sequence of GRF gene. miR396 cut the mRNA sequence of GRF gene between “CGUUCAAGAA” and “AGCNUGUGGAA” site,thus negatively regulating the GRF gene expression
图4 miR396-GRF模块调控植物生长发育的过程 miR396-GRF调控途径通过影响细胞扩增以及GA和IAA激素合成,从而影响植物营养生长、雄性生殖以及果实发育等生长发育过程。并且GIF蛋白与GRF蛋白会形成功能复合物从而增强GRF功能
Fig. 4 Process of miR396-GRF module regulating plant growth and development The miR396-GRF regulatory pathway affects vegetative growth,male reproduction and fruit development by affecting cell amplification and the synthesis of GA and IAA hormones. And GIF protein and GRF protein will form a functional complex to enhance GRF function
图5 miR396-GRF调控模块在胁迫响应过程中的可能调控途径 植物体中,miR396-GRF模块通过调控下游胁迫反应相关功能基因的表达和细胞增殖,参与着多种逆境胁迫相应过程
Fig. 5 Feasible regulation approach of miR396-GRF mod-ule in the process of stress response In plants, miR396-GRF module participates in a variety of stress response processes by regulating the expression of downstream stress response related functional genes and cell proliferation
[1] |
Liu WC, Zhou YG, Li XW, et al. Tissue-specific regulation of gma-miR396 family on coordinating development and low water availability responses[J]. Front Plant Sci, 2017, 8:1112.
doi: 10.3389/fpls.2017.01112 pmid: 28694817 |
[2] |
Omidbakhshfard MA, Proost S, Fujikura U, et al. Growth-regulating factors(GRFs):a small transcription factor family with important functions in plant biology[J]. Mol Plant, 2015, 8(7):998-1010.
doi: 10.1016/j.molp.2015.01.013 pmid: 25620770 |
[3] |
Chen XL, Jiang LR, Zheng JS, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice[J]. J Exp Bot, 2019, 70(15):3851-3866.
doi: 10.1093/jxb/erz192 pmid: 31020332 |
[4] | 强晓敏, 高南, 冯晓宇, 等. 超量表达GRF9基因促进番茄生长并增强其对磷的吸收利用能力[J]. 土壤, 2013, 45(3):483-488. |
Qiang XM, Gao N, Feng XY, et al. GRF9 over-expressing improves tomato growth and phosphorus use efficiency[J]. Soils, 2013, 45(3):483-488. | |
[5] |
韩美玲, 谭茹姣, 晁代印. “绿色革命”新进展:赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种[J]. 植物学报, 2020, 55(1):5-8.
doi: 10.11983/CBB20002 |
Han ML, Tan RJ, Chao DY. A new progress of green revolution:epigenetic modification dual-regulated by gibberellin and nitrogen supply contributes to breeding of high yield and nitrogen use efficiency rice[J]. Chin Bull Bot, 2020, 55(1):5-8. | |
[6] |
Kong JX, Martin-Ortigosa S, Finer J, et al. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species[J]. Front Plant Sci, 2020, 11:572319.
doi: 10.3389/fpls.2020.572319 URL |
[7] |
Wu ZJ, Wang WL, Zhuang J. Developmental processes and responses to hormonal stimuli in tea plant(Camellia sinensis)leaves are controlled by GRF and GIF gene families[J]. Funct Integr Genomics, 2017, 17(5):503-512.
doi: 10.1007/s10142-017-0553-0 URL |
[8] | Rodriguez RE, Ercoli MF, Debernardi JM, et al. Growth-regulating factors, A transcription factor family regulating more than just plant growth[M]// Gonzalez DH. Plant Transcription Factors.Amsterdam:Elsevier, 2016:269-280. |
[9] |
Kim JH. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Rep, 2019, 52(4):227-238.
pmid: 30885290 |
[10] |
Beltramino M, Ercoli MF, Debernardi JM, et al. Robust increase of leaf size by Arabidopsis thaliana GRF3-like transcription factors under different growth conditions[J]. Sci Rep, 2018, 8(1):13447.
doi: 10.1038/s41598-018-29859-9 pmid: 30194309 |
[11] | 周蕾. 烟草叶片发育相关ARF和GRF家族基因的表达分析与功能验证[D]. 北京: 中国农业科学院, 2020. |
Zhou L. Expression analysis and functional verification of ARF and GRF family genes related to tobacco leaf development[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[12] |
Wang FD, Qiu NW, Ding Q, et al. Genome-wide identification and analysis of the growth-regulating factor family in Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. BMC Genomics, 2014, 15(1):807.
doi: 10.1186/1471-2164-15-807 URL |
[13] |
Lu YZ, Meng YL, Zeng J, et al. Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice[J]. BMC Plant Biol, 2020, 20(1):200.
doi: 10.1186/s12870-020-02417-0 pmid: 32384927 |
[14] |
Gao F, Wang K, Liu Y, et al. Blocking miR396 increases rice yield by shaping inflorescence architecture[J]. Nat Plants, 2015, 2:15196.
doi: 10.1038/nplants.2015.196 pmid: 27250748 |
[15] |
Liu HH, Guo SY, Xu YY, et al. OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4[J]. Plant Physiol, 2014, 165(1):160-174.
doi: 10.1104/pp.114.235564 pmid: 24596329 |
[16] | Baucher M, Moussawi J, Vandeputte OM, et al. A role for the miR396/GRF network in specification of organ type during flower development, as supported by ectopic expression of Populus trichocarpa miR396c in transgenic tobacco[J]. Plant Biol(Stuttg), 2013, 15(5):892-898. |
[17] |
Hou N, Cao YL, Li FY, et al. Epigenetic regulation of miR396 expression by SWR1-C and the effect of miR396 on leaf growth and developmental phase transition in Arabidopsis[J]. J Exp Bot, 2019, 70(19):5217-5229.
doi: 10.1093/jxb/erz285 URL |
[18] | 邢媛. OsGRF1基因突变对水稻性状的影响及机制分析[D]. 扬州: 扬州大学, 2020. |
Xing Y. Effects of OsGRF1 gene mutation on rice characters and its mechanism analysis[D]. Yangzhou: Yangzhou University, 2020. | |
[19] | Rodriguez RE, Mecchia MA, Debernardi JM, et al. Control of cell proliferation in Arabidopsis thaliana by microRNA miR396[J]. Dev Camb Engl, 2010, 137(1):103-112. |
[20] |
Wang JN, Zhou HJ, Zhao YQ, et al. PagGRF12a interacts with PagGIF1b to regulate secondary xylem development through modulating PagXND1a expression in Populus alba × P. Glandulosa[J]. J Integr Plant Biol, 2021, 63(10):1683-1694.
doi: 10.1111/jipb.13102 URL |
[21] |
Liu YR, Yan JP, Wang KX, et al. MiR396-GRF module associates with switchgrass biomass yield and feedstock quality[J]. Plant Biotechnol J, 2021, 19(8):1523-1536.
doi: 10.1111/pbi.13567 pmid: 33567151 |
[22] |
Zhang B, Tong YN, Luo KS, et al. Identification of GROWTH-REGULATING FACTOR transcription factors in lettuce(Lactuca sativa)genome and functional analysis of LsaGRF5 in leaf size regulation[J]. BMC Plant Biol, 2021, 21(1):485.
doi: 10.1186/s12870-021-03261-6 pmid: 34688264 |
[23] |
Bazin J, Khan GA, Combier JP, et al. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula[J]. Plant J, 2013, 74(6):920-934.
doi: 10.1111/tpj.12178 URL |
[24] |
Zhang JS, Zhou ZY, Bai JJ, et al. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions[J]. Natl Sci Rev, 2020, 7(1):102-112.
doi: 10.1093/nsr/nwz142 URL |
[25] |
Lin YR, Zhu YW, Cui YC, et al. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9[J]. J Exp Bot, 2021, 72(20):7067-7077.
doi: 10.1093/jxb/erab336 URL |
[26] |
Yu Y, Sun FY, Chen N, et al. MiR396 regulatory network and its expression during grain development in wheat[J]. Protoplasma, 2021, 258(1):103-113.
doi: 10.1007/s00709-020-01556-3 URL |
[27] | 郭泾磊. 小麦GRF基因家族的生物信息学分析与TaGRF1和TaGRF2的功能鉴定[D]. 杨凌: 西北农林科技大学, 2020. |
Guo JL. Bioinformatics analysis of wheat GRF gene family and functional identification of TaGRF1 and TaGRF2[D]. Yangling: Northwest A & F University, 2020. | |
[28] | 曹东艳. miR396在番茄果实生长发育中的功能研究[D]. 北京: 中国农业大学, 2018. |
Cao DY. Functional identification of miR396 on tomato fruit growth and development[D]. Beijing: China Agricultural University, 2018. | |
[29] | 石文慧. 油菜高效再生体系的建立及草甘膦抗性基因EPSPs和BnGRF2的遗传转化[D]. 兰州: 甘肃农业大学, 2017. |
Shi WH. Establishment of efficient regeneration system and genetic transformation of glyphosate resistant genes EPSPs and BnGRF2 in rape[D]. Lanzhou: Gansu Agricultural University, 2017. | |
[30] | 张肖逢. 玉米ga20ox5矮化突变体和转ZmGRF1基因玉米的鉴定及氮素利用率研究[D]. 北京: 中国农业科学院, 2021. |
Zhang XF. Identification and nitrogen use efficiency analysis of ga20ox5 mutant and transgenic plants overexpressing ZmGRF1[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
[31] |
Fracasso A, Vallino M, Staropoli A, et al. Increased water use efficiency in miR396-downregulated tomato plants[J]. Plant Sci, 2021, 303:110729.
doi: 10.1016/j.plantsci.2020.110729 URL |
[32] | 章丽丽, 李光杰, 陆玉芳, 等. 拟南芥14-3--3蛋白GRF9调控番茄根系响应水分胁迫的生理机制[J]. 土壤, 2020, 52(1):74-80. |
Zhang LL, Li GJ, Lu YF, et al. Involvement of Arabidopsis GRF9 in tomato root growth and response under polyethylene glycol induced water stress[J]. Soils, 2020, 52(1):74-80. | |
[33] |
Yuan SR, Zhao JM, Li ZG, et al. microRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass[J]. Hortic Res, 2019, 6:48.
doi: 10.1038/s41438-019-0130-x URL |
[34] |
Noon JB, Hewezi T, Baum TJ. Homeostasis in the soybean miRNA396-GRF network is essential for productive soybean cyst nematode infections[J]. J Exp Bot, 2019, 70(5):1653-1668.
doi: 10.1093/jxb/erz022 URL |
[35] |
Chandran V, Wang H, Gao F, et al. miR396- OsGRFs module balances growth and rice blast disease-resistance[J]. Front Plant Sci, 2019, 9:1999.
doi: 10.3389/fpls.2018.01999 URL |
[36] |
Pan WB, Cheng ZT, Han ZG, et al. Efficient transformation and genome editing of watermelon assisted by genes that encode developmental regulators[J]. BioRxiv, 2021. DOI:https://doi.org/10.1101/2021.11.05.467370.
doi: https://doi.org/10.1101/2021.11.05.467370 |
[37] |
Debernardi JM, Tricoli DM, Ercoli MF, et al. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants[J]. Nat Biotechnol, 2020, 38(11):1274-1279.
doi: 10.1038/s41587-020-0703-0 pmid: 33046875 |
[38] |
Qiu FT, Xing SN, Xue CX, et al. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing[J]. Sci China Life Sci, 2021. DOI:https://doi.org/10.1007/s11427-021-1949-9.
doi: https://doi.org/10.1007/s11427-021-1949-9 |
[39] |
Luo GB, Palmgren M. GRF-GIF chimeras boost plant regeneration[J]. Trends Plant Sci, 2021, 26(3):201-204.
doi: 10.1016/j.tplants.2020.12.001 pmid: 33349565 |
[40] |
Ai G, Zhang DD, Huang R, et al. Genome-wide identification and molecular characterization of the growth-regulating factors-interacting factor gene family in tomato[J]. Genes, 2020, 11(12):1435.
doi: 10.3390/genes11121435 URL |
[41] | Das Gupta M, Nath U. Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396[J]. Plant Cell, 2015, 27(10):2785-2799. |
[42] |
Kuijt SJ, Greco R, Agalou A, et al. Interaction between the growth-regulating factor and knotted1-like homeobox families of transcription factors[J]. Plant Physiol, 2014, 164(4):1952-1966.
doi: 10.1104/pp.113.222836 pmid: 24532604 |
[43] |
Blázquez MA, Nelson DC, Weijers D. Evolution of Plant Hormone Response Pathways[J]. Annu Rev Plant Biol, 2020, 71:327-353.
doi: 10.1146/annurev-arplant-050718-100309 pmid: 32017604 |
[44] |
Park J, Lee Y, Martinoia E, et al. Plant hormone transporters:what we know and what we would like to know[J]. BMC Biol, 2017, 15(1):93.
doi: 10.1186/s12915-017-0443-x URL |
[45] | 郭泾磊, 张程炀, 李红霞, 等. 小麦TaGRF4基因分析与功能鉴定[J]. 西北农业学报, 2020, 29(9):1317-1324. |
Guo JL, Zhang CY, Li HX, et al. Analysis and functional identification of TaGRF4 gene in wheat[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(9):1317-1324. | |
[46] |
Vall-Llaura N, Fernández-Cancelo P, Nativitas-Lima I, et al. ROS-scavenging-associated transcriptional and biochemical shifts during nectarine fruit development and ripening[J]. Plant Physiol Biochem, 2022, 171:38-48.
doi: 10.1016/j.plaphy.2021.12.022 URL |
[47] |
Kim JS, Mizoi J, Kidokoro S, et al. Arabidopsis growth-regulating factor7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A[J]. Plant Cell, 2012, 24(8):3393-3405.
doi: 10.1105/tpc.112.100933 URL |
[48] |
Wu L, Zhang DF, Xue M, et al. Overexpression of the maize GRF10, an endogenous truncated growth-regulating factor protein, leads to reduction in leaf size and plant height[J]. J Integr Plant Biol, 2014, 56(11):1053-1063.
doi: 10.1111/jipb.12220 URL |
[49] |
Chen L, Luan YS, Zhai JM. Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco[J]. Plant Cell Rep, 2015, 34(12):2013-2025.
doi: 10.1007/s00299-015-1847-0 pmid: 26242449 |
[50] |
Yu YH, Ni ZY, Wang Y, et al. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana[J]. Plant Sci, 2019, 285:68-78.
doi: 10.1016/j.plantsci.2019.05.003 URL |
[1] | 张道磊, 甘雨军, 乐亮, 普莉. 玉米产量性状的表观遗传调控机制和育种应用[J]. 生物技术通报, 2023, 39(8): 31-42. |
[2] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[3] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
[4] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[5] | 李萍, 郭发平, 田敏, 税阳, 徐娜娜, 白大嵩, 余德金, 张杰, 胡运高, 彭友林. 甾醇在调节植物生长发育中的研究进展[J]. 生物技术通报, 2022, 38(7): 90-98. |
[6] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[8] | 悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38(12): 11-26. |
[9] | 汤晓丽, 姜福东, 张洪霞. 植物SINA E3泛素连接酶功能的研究进展[J]. 生物技术通报, 2022, 38(10): 10-17. |
[10] | 李舒文, 李殷睿智, 董笛, 王梦迪, 晁跃辉, 韩烈保. 蒺藜苜蓿MtSAG113基因的转化及表达特征分析[J]. 生物技术通报, 2022, 38(1): 108-114. |
[11] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[12] | 徐子涵, 刘倩, 苗大鹏, 陈跃, 胡凤荣. 春兰miR396过表达对拟南芥叶片生长、光合及叶绿素荧光特性的影响[J]. 生物技术通报, 2021, 37(5): 28-37. |
[13] | 李和平, 李积铭, 李爱国, 武军艳, 宋聪敏, 申彦平, 杨莉. 播期对河北省超采水区白菜型冬油菜越冬率及产量的影响[J]. 生物技术通报, 2021, 37(4): 35-46. |
[14] | 武欢, 卢珍红, 郝向阳, 王斌, 焦元辰, 杨春梅, 程春振. 非洲菊GjMnSOD基因的克隆及表达分析[J]. 生物技术通报, 2021, 37(10): 17-25. |
[15] | 宫伟, 余健源, 张曦, 单晓昳. 硝酸根调控植物开花和产量分子机制的研究进展[J]. 生物技术通报, 2020, 36(8): 162-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||