[1] Becker J, Wittmann C. Systems and synthetic metabolic engineering for amino acid production-the heartbeat of industrial strain development[J]. Curr Opin Biotechnol, 2012, 23(5):718-726.
[2] Mitsuhashi S. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides[J]. Current Opinion in Biotechnology, 2014, 26:38-44.
[3] Stolz M, Peters-Wendisch P, Etterich H, et al. Reduced folate supply as a key to enhanced L-serine production by Corynebacterium gluta-micum[J]. Appl Environ Microbiol, 2007, 73(3):750-755.
[4] Shen PH, Chao HJ, Jiang CJ, et al. Enhancing production of L-serine by increasing the glyA gene expression in Methylobacterium sp. MB200[J]. Appl Biochem Biotechnol, 2010, 160(3):740-750.
[5] Keda M, Takeno S. Amino acid production by Corynebacterium glutamicum[J]. Corynebacterium Glutamicum Microbiology Monographs, 2013, 23:107-147.
[6] Zhu GY, Zhu X, Wan XL, et al. Hydrolysis technology and kinetics of poultry waste to produce amino acids in subcritical water[J]. J Anal Appl Pyrolysis, 2010, 88(2):187-191.
[7] Effenberger F, Zoller G. Amino acids;13:Investigations on the synthesis of DL-serine from α-haloacrylic acid derivatives[J]. Tetrahedron, 1988, 44(17):5573-5582.
[8] Jiang W, Xia BJ, Huang JJ, et al. Characterization of a serine hydroxymethyltransferase for L-serine enzymatic production from Pseudomonas plecoglossicida[J]. World Journal of Microbiology and Biotechnology, 2013, 29(11):2067-2076.
[9] Grant GA, Xu XL, Hu ZQ. The relationship between effector binding and inhibition of activity in D-3-phosphoglycerate dehydrogenase[J]. Protein Science, 2008, 8(11):2501-2505.
[10] Schneider F, Krämer R, Burkovski A. Identification and characterization of the main β-alanine uptake system in Escherichia coli[J]. Appl Microbiol Biotechnol, 2004, 65(5):576-582.
[11] Kim YM, Ogawa W, Tamai E, et al. Purification, reconstitution, and characterization of Na + /serine symporter, SstT, of Escherichia coli[J]. The Journal of Biochemistry, 2002, 132(1):71-76.
[12] Na D, Park JH, Jang YS, et al. Systems metabolic engineering of Escherichia coli for chemicals, materials, biofuels, and pharmaceu-ticals[J]. Systems Metabolic Engineering, 2012, 5:117-149.
[13] Ogawa W, Kayahara T, Tsuda M, et al. Isolation and characteriza-tion of an Escherichia coli mutant lacking the major serine transpo-rter, and cloning of a serine transporter gene[J]. The Journal of Biochemistry, 1997, 122(6):1241-1245.
[14] Hsieh JM, Besserer GM, Madej MG, et al. Bridging the gap:A GFP-based strategy for overexpression and purification of membrane proteins with intra and extracellular C-termini[J]. Protein Science, 2010, 19(4):868-880.
[15] Shao ZQ, Lin RT, Newman EB. Sequencing and characterization of the sdaC gene and identification of the sdaCB operon in Escherichia coli K12[J]. Eur J Biochem, 1994, 222(3):901-907.
[16] Simic P, Sahm H, Eggeling L. L-threonine export:use of peptides to identify a new translocator from Corynebacterium glutamicum[J]. J Bacteriol, 2001, 183(18):5317-5324.
[17] Bell JK, Pease PJ, Bell JE, et al. De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal[J]. Eur J Biochem, 2002, 269(17):4176-4184.
[18] Grant GA, Hu ZQ, Xu XL. Identification of amino acid residues contributing to the mechanism of cooperativity in Escherichia coli D-3-phosphoglycerate dehydrogenase[J]. Biochemistry, 2005, 44(51):16844-16852.
[19] Grant GA. Transient kinetic analysis of L-serine interaction with Escherichia coli D-3-phosphoglycerate dehydrogenase containing amino acid mutations in the hinge regions[J]. Biochemistry, 2011, 50(14):2900-2906.
[20] Peters-Wendisch P, Netzer R, Eggeling L, et al. 3-Phosphoglycerate dehydrogenase from Corynebacterium glutamicum:the C-terminal domain is not essential for activity but is required for inhibition by L-serine[J]. Appl Microbiol Biotechnol, 2002, 60:437-441.
[21] Peters-Wendisch P, Stolz M, Etterich H, et al. Metabolic engineering of Corynebacterium glutamicum for L-serine production[J]. Appl Environ Microbiol, 2005, 71:7139-7144.
[22] 来书娟, 张芸, 刘树文, 等. 产L-丝氨酸谷氨酸棒杆菌的代谢工程改造和代谢流分析[J]. 中国科学:生命科学, 2012, 42(4):295-303.
[23] Li Y, Chen GK, Tong XW, et al. Construction of Escherichia coli strains producing L-serine from glucose[J]. Biotechnology Letters, 2012, 34(8):1525-1530.
[24] 张晓娟, 窦文芳, 许泓瑜, 等. 维生素对谷氨酸棒杆菌SYPS-062直接发酵合成L-丝氨酸的影响[J]. 中国生物工程杂志, 2007, 27(5):50-55.
[25] 魏东, 谭慧林, 杨海燕, 等. L-丝氨酸高产菌株的选育和摇瓶发酵条件优化[J]. 氨基酸和生物资源, 2006, 28(1):46-48.
[26] Park JH, Lee KH, Kim TY, et al. Metabolic engineering of Escher-ichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation[J]. Proc Natl Acad Sci USA, 2007, 104(19):7797-7802.
[27] Park JH, Jang YS, Lee JW, et al. Escherichia coli W as a new platform strain for the enhanced production of L-valine by systems metabolic engineering[J]. Biotechnology and Bioengineering, 2011, 108(5):1140-1147.
[28] Yin L, Shi F, Hu F, et al. Increasing L-isoleucine production in Corynebacterium glutamicum by overexpressing global regulator Lrp and two-component export system BrnFE[J]. Journal Applied Microbiology, 2013, 114(5):1369-1377.
[29] Yin LH, Hu XQ, Xu DQ, et al. Co-expression of feedback-resistant threonine dehydratase and acetohydroxy acid synthase increase L-isoleucine production in Corynebacterium glutamicum[J]. Metabolic Engineering, 2012, 14(5):542-550.
[30] Zhao ZJ, Zou C, Zhu YX, et al. Development of L-tryptophan production strains by defined genetic modification in Escherichia coli[J]. J Ind Microbiol Biotechnol, 2011, 38:1921-1929.
[31] Zhao ZJ, Chen S, et al. Effect of gene knockouts of L-tryptophan uptake system on the production of L-tryptophan in Escherichia coli[J]. Process Biochemistry, 2012, 47(2):340-344.
[32] Wiriyathanawudhiwong N, Iwao O, Li ZD, et al. The outer membr-ane TolC is involved in cysteine tolerance and overproduction in Escherichia coli[J]. Applied Microbiology and Biotechnology, 2009, 81(5):903-913.
[33] Tatarko M, Romeo T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli[J]. Curr Microbiol, 2001, 43(1):26-32.
[34] Nakahigashi K, Toya Y, Ishii N, et al. Systematic phenome analysis of Escherichia coli multiple-knockout mutants reveals hidden reactions in central carbon metabolism[J]. Molecular Systems Biology, 2009, 5(1):1-14.
[35] Lee KH, Park JH, Kim TY, et al. Systems metabolic engineering of Escherichia coli for L-threonine production[J]. Molecular Systems Biology, 2007, 3(149):1-8.
[36] 赵志军. L-色氨酸生产菌株的构建及代谢调控研究[D]. 无锡:江南大学, 2011.
[37] Yin LH, Hu X, Wang X. Proteomic analysis of L-isoleucine production by Corynebacterium glutamicum[J]. Journal of Pure and Applied Microbiology, 2013, 8(2):1-10. |