生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 179-187.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511
收稿日期:
2021-12-06
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
刘广超,男,博士,讲师,研究方向:植物与根际微生物;E-mail: 基金资助:
LIU Guang-chao(), YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin()
Received:
2021-12-06
Published:
2022-08-26
Online:
2022-09-14
摘要:
为获得优质的解磷促生菌种资源,助力农业生产减肥增效,对山东省高密市方市乡烟草根际土壤解磷菌进行筛选,将筛选得到的高效解磷菌3P29进行分子生物学鉴定,并研究其解磷性能及促生能力。菌株3P29鉴定为皮特不动杆菌,其对卵磷脂的转化量为13.38 mg/L,磷酸钙的转化量为19.83 mg/L,具有高效分解有机磷及无机磷的功能。烟草盆栽试验表明,烟草主根变长且有更多侧根产生,从而增强根对营养元素的吸收,烟草叶片全氮磷钾含量在无磷营养液条件下提高了71%、49%和134%,可为解磷菌肥的研发与利用提供优良菌株资源。
刘广超, 叶青, 车永梅, 李雅华, 安东, 刘新. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187.
LIU Guang-chao, YE Qing, CHE yong-mei, LI Ya-hua, AN Dong, LIU Xin. Screening and Identification of High-efficiency Phosphate Solubilizing Bacteria in Tobacco Rhizosphere and Its Growth-promoting Effects[J]. Biotechnology Bulletin, 2022, 38(8): 179-187.
菌株编号 Strain No. | 有机磷含量Organic phosphorus content /(mg·L-1) | 无机磷含量Inorganic phosphorus content /(mg·L-1) |
---|---|---|
2P1 | 11.210 | 9.260 |
2P10 | 9.260 | 14.490 |
2P14 | 2.620 | 23.250 |
2P23 | 10.210 | 10.690 |
2P24 | 7.750 | 23.920 |
3P25 | 3.040 | 25.330 |
3P28 | 2.890 | 26.190 |
3P29 | 13.380 | 19.830 |
3P33 | 0.000 | 24.870 |
3P37 | 0.000 | 23.520 |
表1 解磷菌3P29的解磷能力
Table 1 Phosphorus solubilizing ability of strain 3P29
菌株编号 Strain No. | 有机磷含量Organic phosphorus content /(mg·L-1) | 无机磷含量Inorganic phosphorus content /(mg·L-1) |
---|---|---|
2P1 | 11.210 | 9.260 |
2P10 | 9.260 | 14.490 |
2P14 | 2.620 | 23.250 |
2P23 | 10.210 | 10.690 |
2P24 | 7.750 | 23.920 |
3P25 | 3.040 | 25.330 |
3P28 | 2.890 | 26.190 |
3P29 | 13.380 | 19.830 |
3P33 | 0.000 | 24.870 |
3P37 | 0.000 | 23.520 |
图2 基于解磷菌3P29和相关菌株的16S rDNA 序列采用邻接法建立的系统发育树
Fig. 2 Phylogenetic tree established using the neighbor-joining method,based on 16S rDNA sequences of strain 3P29 and related strains
图3 基于解磷菌3P29和相关菌株的gyrB序列采用邻接法建立的系统发育树
Fig. 3 Phylogenetic tree established using the neighbor-joining method,based on gyrB sequences of strain 3P29 and related strains
图6 解磷菌3P29对烟草生长的影响 CKt:无菌处理,CTt:接种3P29,1代表无磷霍格兰营养液培养,2代表花无缺全营养液培养,bar=10 cm
Fig. 6 Effects of strain 3P29 on tobacco growth CKt:Aseptic processing. CTt:Inoculation with 3P29. 1 represents phosphorus-free Hoagland nutrient solution culture,and 2 represents flower-free whole nutrient solution culture,bar=10 cm
处理Treatment | 株高Height/cm | 叶面积Leaf area/cm2 | 叶片数Number of blades | 茎粗Stem thick/cm |
---|---|---|---|---|
CKt1 | 10.70±0.40 | 304±0.42 | 6.67±0.58 | 0.83±0.03 |
CTt1 | 13.40±0.46** | 370.67±0.55** | 8.67±0.57** | 1.13±0.06** |
CKt2 | 12.23±0.25 | 342.67±0.15 | 8.00±0.35 | 1.03±0.15 |
CTt2 | 17.13±0.32** | 489±0.49** | 11.33±0.49** | 1.33±0.03** |
表2 解磷菌3P29对烟草生长指标的影响
Table 2 Effects of strain 3P29 on the growth index of tobacco
处理Treatment | 株高Height/cm | 叶面积Leaf area/cm2 | 叶片数Number of blades | 茎粗Stem thick/cm |
---|---|---|---|---|
CKt1 | 10.70±0.40 | 304±0.42 | 6.67±0.58 | 0.83±0.03 |
CTt1 | 13.40±0.46** | 370.67±0.55** | 8.67±0.57** | 1.13±0.06** |
CKt2 | 12.23±0.25 | 342.67±0.15 | 8.00±0.35 | 1.03±0.15 |
CTt2 | 17.13±0.32** | 489±0.49** | 11.33±0.49** | 1.33±0.03** |
处理 Treatment | 地上鲜重 Fresh weight on the ground/g | 地上干重 Dry weight on the ground/g | 地下鲜重 Underground fresh weight/g | 地下干重 Underground dry weight/g |
---|---|---|---|---|
CKt1 | 34.37±0.42 | 3.12±0.03 | 1.30±0.10 | 0.12±0.01 |
CTt1 | 59.63±0.55** | 6.05±0.05** | 2.60±0.10** | 0.27±0.01** |
CKt2 | 53.83±0.15 | 5.45±0.04 | 1.80±0.10 | 0.18±0.01 |
CTt2 | 92.93±0.49** | 9.46±0.02** | 2.70±0.17** | 0.29±0.01** |
表3 解磷菌3P29对烟草地上部分和地下部分生物量的影响
Table 3 Effects of strain 3P29 on the biomass of aerial and underground parts of tobacco
处理 Treatment | 地上鲜重 Fresh weight on the ground/g | 地上干重 Dry weight on the ground/g | 地下鲜重 Underground fresh weight/g | 地下干重 Underground dry weight/g |
---|---|---|---|---|
CKt1 | 34.37±0.42 | 3.12±0.03 | 1.30±0.10 | 0.12±0.01 |
CTt1 | 59.63±0.55** | 6.05±0.05** | 2.60±0.10** | 0.27±0.01** |
CKt2 | 53.83±0.15 | 5.45±0.04 | 1.80±0.10 | 0.18±0.01 |
CTt2 | 92.93±0.49** | 9.46±0.02** | 2.70±0.17** | 0.29±0.01** |
图7 解磷菌3P29对烟草叶片氮、磷和钾元素含量的影响 图中**表示差异达到显著水平(P<0.01)
Fig. 7 Effects of strain 3P29 on contents of nitrogen,phosphorus and potassium in tobacco leaves **in the figure indicates significant differences at P<0.01 level
[1] |
Hameeda B, Harini G, Rupela OP, et al. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna[J]. Microbiol Res, 2008, 163(2):234-242.
pmid: 16831538 |
[2] |
Yang L, Liu YQ, Cao XY, et al. Community composition specificity and potential role of phosphorus solubilizing bacteria attached on the different bloom-forming cyanobacteria[J]. Microbiol Res, 2017, 205:59-65.
doi: S0944-5013(16)30969-7 pmid: 28942845 |
[3] |
Vejan P, Abdullah R, Khadiran T, et al. Role of plant growth promoting rhizobacteria in agricultural sustainability-A review[J]. Molecules, 2016, 21(5):573.
doi: 10.3390/molecules21050573 URL |
[4] |
Wang Z, Xu GY, Ma PD, et al. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage(Brassica campestris ssp. chinensis)[J]. Front Microbiol, 2017, 8:1270.
doi: 10.3389/fmicb.2017.01270 URL |
[5] |
Wu GF, Zhou XP. Characterization of phosphorus-releasing bacteria in a small eutrophic shallow lake, Eastern China[J]. Water Res, 2005, 39(19):4623-4632.
doi: 10.1016/j.watres.2005.08.036 URL |
[6] |
Ahuja A, Ghosh SB, D’Souza SF. Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization[J]. Bioresour Technol, 2007, 98(17):3408-3411.
doi: 10.1016/j.biortech.2006.10.041 URL |
[7] | Jain R, Saxena J, Sharma V. Effect of phosphate-solubilizing fungi Aspergillus awamori S29 on mungbean(Vigna radiata cv. RMG 492)growth[J]. Folia Microbiol(Praha), 2012, 57(6):533-541. |
[8] |
Matos ADM, Gomes ICP, Nietsche S, et al. Phosphate solubilization by endophytic bacteria isolated from banana trees[J]. An Acad Bras Cienc, 2017, 89(4):2945-2954.
doi: 10.1590/0001-3765201720160111 URL |
[9] |
Son HJ, Park GT, Cha MS, et al. Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere[J]. Bioresour Technol, 2006, 97(2):204-210.
doi: 10.1016/j.biortech.2005.02.021 URL |
[10] |
Suleman M, Yasmin S, Rasul M, et al. Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat[J]. PLoS One, 2018, 13(9):e0204408.
doi: 10.1371/journal.pone.0204408 URL |
[11] |
Prakash J, Arora NK. Phosphate-solubilizing Bacillus sp. enhances growth, phosphorus uptake and oil yield of Mentha arvensis L[J]. 3 Biotech, 2019, 9(4):1-9.
doi: 10.1007/s13205-018-1515-5 URL |
[12] |
Ku YL, Xu GY, Tian XH, et al. Root colonization and growth promotion of soybean, wheat and Chinese cabbage by Bacillus cereus YL6[J]. PLoS One, 2018, 13(11):e0200181.
doi: 10.1371/journal.pone.0200181 URL |
[13] |
Manzoor M, Abbasi MK, Sultan T. Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization-mineralization and plant growth promotion[J]. Geomicrobiol J, 2017, 34(1):81-95.
doi: 10.1080/01490451.2016.1146373 URL |
[14] |
Chakdar H, Dastager SG, Khire JM, et al. Characterization of mineral phosphate solubilizing and plant growth promoting bacteria from termite soil of arid region[J]. 3 Biotech, 2018, 8(11):463.
doi: 10.1007/s13205-018-1488-4 pmid: 30402365 |
[15] | 宁德富, 黄必志. 坡地不同利用方式对土壤氮、磷、钾的影响研究[J]. 云南农业大学学报, 2006, 21(1):61-65. |
Ning DF, Huang BZ. Effect of different utilization types on soil N, P, K content at sloping land[J]. J Yunnan Agric Univ, 2006, 21(1):61-65. | |
[16] |
Kou TJ, Lam SK, Chen DL, et al. Soil urease and catalase responses to ozone pollution are affected by the ozone sensitivity of wheat cultivars[J]. J Agro Crop Sci, 2018, 204(4):424-428.
doi: 10.1111/jac.12268 URL |
[17] |
Wang ZQ, Tan XP, Lu GN, et al. Soil properties influence kinetics of soil acid phosphatase in response to arsenic toxicity[J]. Ecotoxicol Environ Saf, 2018, 147:266-274.
doi: 10.1016/j.ecoenv.2017.08.050 URL |
[18] | 周瑶, 马红彬, 贾希洋, 等. 不同生态恢复措施下宁夏黄土丘陵典型草原土壤质量评价[J]. 农业工程学报, 2017, 33(18):102-110. |
Zhou Y, Ma HB, Jia XY, et al. Soil quality assessment under different ecological restoration measures in typical steppe in loess hilly area in Ningxia[J]. Trans Chin Soc Agric Eng, 2017, 33(18):102-110. | |
[19] | Wang T, Liu MQ, Li HX. Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil[J]. Acta Agric Scand Sect B — Soil Plant Sci, 2014, 64(3):252-259. |
[20] |
Scagliola M, Pii Y, Mimmo T, et al. Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley(Hordeum vulgare L. )and tomato(Solanum lycopersicon L. )grown under Fe sufficiency and deficiency[J]. Plant Physiol Biochem, 2016, 107:187-196.
doi: 10.1016/j.plaphy.2016.06.002 URL |
[21] |
Telesiński A, Krzyśko-Łupicka T, Cybulska K, et al. Response of soil phosphatase activities to contamination with two types of tar oil[J]. Environ Sci Pollut Res Int, 2018, 25(28):28642-28653.
doi: 10.1007/s11356-018-2912-3 URL |
[22] |
Błońska E, Lasota J, Gruba P. Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand[J]. Ecol Res, 2016, 31(5):655-664.
doi: 10.1007/s11284-016-1375-6 URL |
[23] |
Xun FF, Xie BM, Liu SS, et al. Effect of plant growth-promoting bacteria(PGPR)and arbuscular mycorrhizal fungi(AMF)inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation[J]. Environ Sci Pollut Res Int, 2015, 22(1):598-608.
doi: 10.1007/s11356-014-3396-4 URL |
[24] | 刘丽英, 刘珂欣, 迟晓丽, 等. 枯草芽孢杆菌SNB-86菌肥对连作平邑甜茶幼苗生长及土壤环境的影响[J]. 园艺学报, 2018, 45(10):2008-2018. |
Liu LY, Liu KX, Chi XL, et al. Effects of bioorganic fertilizer SNB-86 special for continuous cropping apple on Malus hupehensis seedlings and soil environment under replant disease condition[J]. Acta Hortic Sin, 2018, 45(10):2008-2018. | |
[25] |
Xiao SY, Luo M, Liu YX, et al. Rhizosphere effect and its associated soil-microbe interactions drive iron fraction dynamics in tidal wetland soils[J]. Sci Total Environ, 2021, 756:144056.
doi: 10.1016/j.scitotenv.2020.144056 URL |
[26] |
Wei F, Zhao LH, Xu XM, et al. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions[J]. Front Plant Sci, 2019, 10:1659.
doi: 10.3389/fpls.2019.01659 URL |
[27] |
You M, Fang SM, MacDonald J, et al. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth[J]. Microbiol Res, 2020, 233:126395.
doi: 10.1016/j.micres.2019.126395 URL |
[28] |
Dharni S, Srivastava AK, Samad A, et al. Impact of plant growth promoting Pseudomonas monteilii PsF84 and Pseudomonas plecoglossicida PsF610 on metal uptake and production of secondary metabolite(monoterpenes)by rose-scented Geranium(Pelargonium graveolens cv. bourbon)grown on tannery sludge amended soil[J]. Chemosphere, 2014, 117:433-439.
doi: 10.1016/j.chemosphere.2014.08.001 pmid: 25194330 |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[4] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[5] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[6] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[7] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[8] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[9] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[10] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[11] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[12] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[13] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
[14] | 邹雪峰, 李铭刚, 包玲风, 陈齐斌, 赵江源, 汪林, 濮永瑜, 郝大程, 张庆, 杨佩文. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138. |
[15] | 尹卓然, 轩栋栋, 李晨依, 李长, 柴哲, 王锟瑶, 赵孟琦, 彭靖媛, 董杰, 贾宏昉. 烟草NtNRAMP3b的克隆及功能分析[J]. 生物技术通报, 2022, 38(12): 175-183. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||