生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 206-215.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1377
收稿日期:
2021-11-03
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
王子夜,女,硕士研究生,研究方向:林木病理学;E-mail: 基金资助:
WANG Zi-ye1,2(), WANG Zhi-gang1,2, YAN Ai-hua1,3()
Received:
2021-11-03
Published:
2022-08-26
Online:
2022-09-14
摘要:
原生生物在土壤微生物组中起到枢纽作用,在时间、空间维度上对原生生物分布格局及其对根系微生态影响的研究具有重要意义。本研究按照空间换时间法,选择同一桑园不同树龄(10龄、80龄,200龄左右)桑(Morus alba L.)根际土壤作为样本,利用Illumina高通量测序技术测定土壤原生生物种类多样性、群落组成差异并分析了其驱动因素,为探讨桑根际原生生物的生态学稳定性机制奠定基础。结果表明,不同树龄桑树原生生物群落优势门基本一致,主要为金藻门Chrysophyta、Kinetoplastida、硅藻门Bacillariophyta、轮虫门Rotaliida、卵菌门Oomycetes和Petalomonadida,但相对丰度存在差异,在10a vs 80a、10a vs 200a和80a vs 200a中相对丰度差异显著的属分别为Paracercomonas、Petalomonas和变形虫Acanthamoeba、吻滴虫属Rhynchomonas,表明土壤原生生物群落在属水平上组成和相对丰度具有明显树龄变异。原生生物多样性受到土壤理化性质的影响,群落多样性、丰富度和均匀度与氯离子含量极显著负相关,Simpson指数与全盐量显著负相关,群落覆盖度与速效钾和碱解氮含量显著正相关。桑根际原生生物与真菌、细菌之间存在共同的环境偏好或潜在的生物相互作用。
王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215.
WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages[J]. Biotechnology Bulletin, 2022, 38(8): 206-215.
树龄 Tree age/a | 有效序列数 Number of valid sequences | OTU数 Number of OTUs | Simpson指数Simpson index | Shannon指数Shannon index | Chao指数 Chao index | Pielou_e指数 Pielou_e index | 覆盖度 Coverage% |
---|---|---|---|---|---|---|---|
10 | 315 901 | 2 135 | 0.966 | 6.620 | 560.453 | 509.420 | 99.428 |
80 | 288 092 | 1 578 | 0.966 | 6.346 | 416.783 | 395.180 | 99.692 |
200 | 355 357 | 284 | 0.933 | 5.334 | 303.817 | 285.500 | 99.740 |
表1 土壤原生生物数据统计及alpha多样性
Table 1 Soil protist data statistics and alpha diversity
树龄 Tree age/a | 有效序列数 Number of valid sequences | OTU数 Number of OTUs | Simpson指数Simpson index | Shannon指数Shannon index | Chao指数 Chao index | Pielou_e指数 Pielou_e index | 覆盖度 Coverage% |
---|---|---|---|---|---|---|---|
10 | 315 901 | 2 135 | 0.966 | 6.620 | 560.453 | 509.420 | 99.428 |
80 | 288 092 | 1 578 | 0.966 | 6.346 | 416.783 | 395.180 | 99.692 |
200 | 355 357 | 284 | 0.933 | 5.334 | 303.817 | 285.500 | 99.740 |
图1 根际土壤原生生物主成分分析 每个点代表一个样本,不同颜色的点代表不同的组
Fig. 1 Principal component analysis(PCA)of rhizosph-ere soil protist Each dot represents a sample,and dots of different colors indicate different groups
图2 门水平物种统计图 外圈数字为物种丰富度,内圈数字为不同年龄组,下同
Fig. 2 Statistics at phylum level The numbers in the outer circle are species richness,the inner circle numbers are for different age groups,the same below
图5 土壤理化指标差异显著性分析 平均值差值的显著性水平为0.05。AN为碱解氮(mg/kg),AK为速效钾(mg/kg),Cl氯离子(mg/kg),AP速效磷(mg/kg),SOM为有机质(mg/kg),Na为钠离子(mg/kg),TDS为全盐量(mg/kg)
Fig. 5 Significance analysis of differences in soil physical and chemical indicators The significance level of the mean difference is 0.05. AN is alkaline decomposition nitrogen(mg/kg),AK is potassium ion(mg/kg),Cl is chloride ion(mg/kg),AP is availabfe phosphorus(mg/kg),SOM is organic matter(mg/kg),Na is sodium ion(mg/kg),and TDS is total salt(mg/kg)
Tree age | AK | AP | AN | SOM | TDS | Na | Cl | pH | |
---|---|---|---|---|---|---|---|---|---|
Chao1 | -0.737** | -0.374 | 0.092 | -0.502 | -0.077 | -0.265 | 0.126 | 0.387 | 0.280 |
Simpson | -0.858** | 0.115 | 0.238 | -0.215 | -0.091 | -.538* | 0.163 | 0.695** | -0.161 |
Shannon | -0.808** | -0.021 | 0.146 | -0.311 | -0.242 | -0.469 | 0.218 | 0.643** | 0.030 |
Pielou_e | -0.732** | 0.262 | 0.193 | -0.118 | -0.270 | -0.512 | 0.225 | 0.702** | -0.171 |
Goods_coverage | 0.599* | 0.556* | -0.035 | 0.572* | 0.022 | 0.023 | -0.179 | -0.158 | -0.416 |
表2 土壤理化性状与土壤原生生物多样性指数的相关性分析
Table 2 Correlation analysis between soil physical and chemical properties and biodiversity indexes of soil protist
Tree age | AK | AP | AN | SOM | TDS | Na | Cl | pH | |
---|---|---|---|---|---|---|---|---|---|
Chao1 | -0.737** | -0.374 | 0.092 | -0.502 | -0.077 | -0.265 | 0.126 | 0.387 | 0.280 |
Simpson | -0.858** | 0.115 | 0.238 | -0.215 | -0.091 | -.538* | 0.163 | 0.695** | -0.161 |
Shannon | -0.808** | -0.021 | 0.146 | -0.311 | -0.242 | -0.469 | 0.218 | 0.643** | 0.030 |
Pielou_e | -0.732** | 0.262 | 0.193 | -0.118 | -0.270 | -0.512 | 0.225 | 0.702** | -0.171 |
Goods_coverage | 0.599* | 0.556* | -0.035 | 0.572* | 0.022 | 0.023 | -0.179 | -0.158 | -0.416 |
图6 原生生物与真菌、细菌网络关联图 节点间的联系(边缘)表示被连接的两个节点之间存在相关性,橙色线表示正相关,绿色线表示负相关
Fig. 6 Correlation diagram of protis,fungi and bacteria network The inter-node linkage(edge)indicates that there is a correlation between the two nodes being connected,with the orange line indicating a positive correlation and the green line indicating a negative correlation
[1] | 姜勇, 许恒龙, 朱明壮, 等. 胶州湾浮游原生生物时空分布特征——丰度周年变化及与环境因子间的关系[J]. 中国海洋大学学报:自然科学版, 2010, 40(3):17-23. |
Jiang Y, Xu HL, Zhu MZ, et al. Planktonic protists in Jiaozhou Bay, China:annual variation abundance and correlation with environmental conditions[J]. Period Ocean Univ China, 2010, 40(3):17-23. | |
[2] |
Geisen S, Mitchell EAD, Adl S, et al. Soil protists:a fertile frontier in soil biology research[J]. FEMS Microbiol Rev, 2018, 42(3):293-323.
doi: 10.1093/femsre/fuy006 URL |
[3] |
Sun AQ, Jiao XY, Chen QL, et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes[J]. Environ Microbiol, 2021, 23(4):2169-2183.
doi: 10.1111/1462-2920.15385 URL |
[4] |
Dassen S, Cortois R, Martens H, et al. Differential responses of soil bacteria, fungi, Archaea and protists to plant species richness and plant functional group identity[J]. Mol Ecol, 2017, 26(15):4085-4098.
doi: 10.1111/mec.14175 URL |
[5] | 罗正明, 刘晋仙, 周妍英, 等. 亚高山草地土壤原生生物群落结构和多样性海拔分布格局[J]. 生态学报, 2021, 41(7):2783-2793. |
Luo ZM, Liu JX, Zhou YY, et al. Community structures and diversity patterns of the soil protist communities along an altitudinal gradient in a subalpine grassland[J]. Acta Ecol Sin, 2021, 41(7):2783-2793. | |
[6] |
Simpson AGB, Melkonian M. A review series on the biology of selected protist groups[J]. Protist, 2021, 172(3):125818.
doi: 10.1016/j.protis.2021.125818 URL |
[7] |
Geisen S, Mitchell EAD, Adl S, et al. Soil protists:a fertile frontier in soil biology research[J]. FEMS Microbiol Rev, 2018, 42(3):293-323.
doi: 10.1093/femsre/fuy006 URL |
[8] | 卢明镇. 植物-微生物互惠共生:演化机制与生态功能[J]. 生物多样性, 2020, 28(11):1311-1323. |
Lu MZ. Plant-microbe mutualism:evolutionary mechanisms and ecological functions[J]. Biodivers Sci, 2020, 28(11):1311-1323.
doi: 10.17520/biods.2020409 URL |
|
[9] |
Zhao PS, Guo MS, Gao GL, et al. Community structure and functional group of root-associated Fungi of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert[J]. Ecol Evol, 2020, 10(6):3032-3042.
doi: 10.1002/ece3.6119 URL |
[10] |
Lipson DA, Wilson RF, Oechel WC. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem[J]. Appl Environ Microbiol, 2005, 71(12):8573-8580.
doi: 10.1128/AEM.71.12.8573-8580.2005 URL |
[11] | 马丽. 豫东不同树龄梨园土壤微生物生态特征[J]. 河南农业科学, 2018, 47(1):37-42. |
Ma L. Soil microbial ecological characteristics of pear orchard with different ages in eastern Henan Province[J]. J Henan Agric Sci, 2018, 47(1):37-42. | |
[12] | 田稼, 孙超, 杨明琰, 等. 黄土高原不同树龄苹果园土壤微生物、养分及pH的相关性[J]. 西北农业学报, 2012, 21(7):138-141, 148. |
Tian J, Sun C, Yang MY, et al. The correlation of soil microbes, soil nutrient and soil pH of different apple tree-age orchards in loess plateau[J]. Acta Agric Boreali Occidentalis Sin, 2012, 21(7):138-141, 148. | |
[13] | 顾美英, 古丽尼沙·沙依木, 张志东, 等. 黑果枸杞不同组织内生细菌群落多样性[J]. 微生物学报, 2021, 61(1):152-166. |
Gu MY, Gulinisha SYM, Zhang ZD, et al. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr[J]. Acta Microbiol Sin, 2021, 61(1):152-166. | |
[14] |
苏宝玲, 韩士杰, 王建国. 根际微域研究中土样采集方法的研究进展[J]. 应用生态学报, 2000, 11(3):477-480.
pmid: 11767659 |
Su BL, Han SJ, Wang JG. Advance in soil sampling methods in rhizosphere microzone study[J]. Chin J Appl Ecol, 2000, 11(3):477-480.
pmid: 11767659 |
|
[15] | 李虎, 贺婧, 刘冲, 等. 农田灰钙土中有机质和碳酸钙对Zn吸附-解吸行为的影响[J]. 中国环境科学, 2015, 35(6):1786-1793. |
Li H, He J, Liu C, et al. Effect of organic matter and calcium carbonate on behaviors of zinc adsorption-desorption on/from Ningxia farmland sierozem soils[J]. China Environ Sci, 2015, 35(6):1786-1793. | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000. | |
[17] | 张荟荟, 张学洲, 梁维维, 等. 粮草轮作对北疆平原荒漠灌区土壤理化性质的影响[J]. 草原与草坪, 2021, 41(4):128-133. |
Zhang HH, Zhang XZ, Liang WW, et al. Effects of grain-alfalfa rotation on soil physical and chemical properties in desert irrigation area of northern Xinjiang plain[J]. Grassland Turf, 2021, 41(4):128-133. | |
[18] | Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proc Natl Acad Sci USA, 2015, 112(8):E911-E920. |
[19] |
Amaral-Zettler LA, McCliment EA, Ducklow HW, et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[J]. PLoS One, 2009, 4(7):e6372.
doi: 10.1371/journal.pone.0006372 URL |
[20] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[21] |
Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[22] |
Asiloglu R, Shiroishi K, Suzuki K, et al. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils[J]. Soil Biol Biochem, 2021, 161:108397.
doi: 10.1016/j.soilbio.2021.108397 URL |
[23] |
Huang X, Wang JJ, Dumack K, et al. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale[J]. Soil Biol Biochem, 2021, 160:108358.
doi: 10.1016/j.soilbio.2021.108358 URL |
[24] |
Ceja-Navarro JA, Wang Y, Ning DL, et al. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop[J]. Microbiome, 2021, 9(1):96.
doi: 10.1186/s40168-021-01042-9 pmid: 33910643 |
[25] |
Tedersoo L, Bahram M, Cajthaml T, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent[J]. ISME J, 2016, 10(2):346-362.
doi: 10.1038/ismej.2015.116 pmid: 26172210 |
[26] |
Oliverio AM, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Sci Adv, 2020, 6(4):eaax8787.
doi: 10.1126/sciadv.aax8787 URL |
[27] |
Lukešová A, Hoffmann L. Soil algae from acid rain impacted forest areas of the Krušné hory Mts. 1. Algal communities[J]. Vegetatio, 1996, 125(2):123-136.
doi: 10.1007/BF00044646 URL |
[28] |
Fránková M, Bojková J, Poulíčková A, et al. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness[J]. Fottea, 2009, 9(2):355-368.
doi: 10.5507/fot.2009.035 URL |
[29] |
Antonelli M, Wetzel CE, Ector L, et al. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils[J]. Ecol Indic, 2017, 75:73-81.
doi: 10.1016/j.ecolind.2016.12.003 URL |
[30] |
Zhao ZB, He JZ, Quan Z, et al. Fertilization changes soil microbiome functioning, especially phagotrophic protists[J]. Soil Biol Biochem, 2020, 148:107863.
doi: 10.1016/j.soilbio.2020.107863 URL |
[31] | 王静, 李彤, 梁健. 不同树龄苹果树根际土壤的微生物生物量碳、酶和养分特征及其变化规律[J]. 陕西师范大学学报:自然科学版, 2021, 49(1):96-104. |
Wang J, Li T, Liang J. Characteristics and changes of the microbial biomass carbon, enzyme activities and nutrients in rhizosphere soil of apple trees at different ages[J]. J Shaanxi Norm Univ Nat Sci Ed, 2021, 49(1):96-104. | |
[32] | 黄晶淼, 刘国鑫, 刘佩杭, 等. 不同种植年限苹果园根际土壤养分、pH及微生物的相关性[J]. 山西农业科学, 2020, 48(8):1263-1266. |
Huang JM, Liu GX, Liu PH, et al. Correlation of nutrient, pH and microorganism in rhizosphere soil of apple orchard with different cultivation years[J]. J Shanxi Agric Sci, 2020, 48(8):1263-1266. | |
[33] |
Guo S, Xiong W, Hang XN, et al. Protists as main indicators and determinants of plant performance[J]. Microbiome, 2021, 9(1):64.
doi: 10.1186/s40168-021-01025-w URL |
[34] | 程明芳, 金继运, 李春花, 等. 氯离子对作物生长和土壤性质影响的研究进展[J]. 浙江农业科学, 2010, 51(1):12-14. |
Cheng MF, Jin JY, Li CH, et al. Progress of research on the effects of chloride ions on crop growth and soil properties[J]. J Zhejiang Agric Sci, 2010, 51(1):12-14. | |
[35] |
Asiloglu R, Sevilir B, Samuel SO, et al. Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil[J]. Biol Fertil Soils, 2021, 57(2):293-304.
doi: 10.1007/s00374-020-01525-1 URL |
[36] |
Asiloglu R, Kenya K, Samuel SO, et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil[J]. Soil Biol Biochem, 2021, 156:108186.
doi: 10.1016/j.soilbio.2021.108186 URL |
[37] |
Xiong W, Li R, Guo S, et al. Microbial amendments alter protist communities within the soil microbiome[J]. Soil Biol Biochem, 2019, 135:379-382.
doi: 10.1016/j.soilbio.2019.05.025 URL |
[38] |
Xiong W, Jousset A, Guo S, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. ISME J, 2018, 12(2):634-638.
doi: 10.1038/ismej.2017.171 pmid: 29028001 |
[39] |
Rosenberg K, Bertaux J, Krome K, et al. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana[J]. ISME J, 2009, 3(6):675-684.
doi: 10.1038/ismej.2009.11 pmid: 19242534 |
[40] |
Henkes GJ, Kandeler E, Marhan S, et al. Interactions of mycorrhiza and protists in the rhizosphere systemically alter microbial community composition, plant shoot-to-root ratio and within-root system nitrogen allocation[J]. Front Environ Sci, 2018, 6:117.
doi: 10.3389/fenvs.2018.00117 URL |
[41] | 张玉琴, 李文均, 郝涤非, 等. 异常球菌属的分类及应用研究进展[J]. 微生物学通报, 2006, 33(6):133-137. |
Zhang YQ, Li WJ, Hao DF, et al. Review of studies on the taxonomy and application of the genus Deinococcus[J]. Microbiology, 2006, 33(6):133-137. | |
[42] |
Dahal RH, Kim J. Ferrovibrio soli sp. nov., a novel cellulolytic bacterium isolated from stream bank soil[J]. Int J Syst Evol Microbiol, 2018, 68(1):427-431.
doi: 10.1099/ijsem.0.002527 URL |
[43] | Kiss S, Paşca D, Drăgan-Bularda M. Studies of the soil enzymological effects of industrial emissions originating from a point source(an industrial plant)[M]// Enzymology of Disturbed Soils. Amsterdam:Elsevier, 1998:69-115. |
[44] |
Fuji M, Miura C, Yamamoto T, et al. Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth[J]. Symbiosis, 2020, 81(1):53-63.
doi: 10.1007/s13199-020-00681-0 URL |
[45] |
Lee SD. Angustibacter peucedani sp. nov., isolated from rhizosphere soil[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_2):744-750.
doi: 10.1099/ijs.0.042275-0 URL |
[46] |
Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil[J]. Arch Microbiol, 2017, 199(5):701-710.
doi: 10.1007/s00203-017-1349-2 pmid: 28220203 |
[1] | 罗阳兰, 曹乃馨, 杨玉梅, 黄丽玲, 阎勇, 黄世旅. 三种桑黄子实体脂溶性成分的GC-MS分析及抗氧化活性[J]. 生物技术通报, 2023, 39(6): 149-157. |
[2] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[3] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
[4] | 徐小文, 李金仓, 海都, 查玉平, 宋菲, 王义勋. 核桃炭疽菌携带病毒种类鉴定及多样性分析[J]. 生物技术通报, 2023, 39(3): 278-289. |
[5] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[6] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[7] | 陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232. |
[8] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[9] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[10] | 徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234. |
[11] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[12] | 周晓楠, 徐金青, 雷雨晴, 王海庆. 基于GBS-seq的青藏扁蓿豆SNP标记开发[J]. 生物技术通报, 2022, 38(4): 303-310. |
[13] | 谢果珍, 唐圆, 宁晓妹, 邱集慧, 谭周进. 铁皮石斛多糖对高脂饮食小鼠肠黏膜结构及菌群的影响[J]. 生物技术通报, 2022, 38(2): 150-157. |
[14] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[15] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||