[1] |
Medjo B, Atanaskovic-Markovic M, Radic S, et al. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children:clinical features and laboratory diagnosis[J]. Ital J Pediatr, 2014, 40:104.
doi: 10.1186/s13052-014-0104-4
URL
|
[2] |
Waites KB, Xiao L, et al. Mycoplasma pneumoniae from the respiratory tract and beyond[J]. Clin Microbiol Rev, 2017, 30(3):747-809.
doi: 10.1128/CMR.00114-16
pmid: 28539503
|
[3] |
Meyer Sauteur PM, Vink C. Mycoplasma pneumoniae in children:carriage, pathogenesis, and antibiotic resistance[J]. Curr Opin Infect Dis, 2014, 27(3):220-227.
doi: 10.1097/QCO.0000000000000063
URL
|
[4] |
张同强, 郑家峰, 徐勇胜. 暴发性肺炎支原体肺炎的临床特点及治疗[J]. 医学信息, 2020, 33(13):26-29, 34.
|
|
Zhang TQ, Zheng JF, Xu YS. Clinical features and treatment of fulminant Mycoplasma pneumoniae pneumonia[J]. Med Inf, 2020, 33(13):26-29, 34.
|
[5] |
孙国磊, 王一民. 肺炎支原体感染诊断方法的研究进展[J]. 医学综述, 2021, 27(10):1961-1965.
|
|
Sun GL, Wang YM. Research progress of diagnosis methods of Mycoplasma pneumoniae infection[J]. Med Recapitul, 2021, 27(10):1961-1965.
|
[6] |
Yang C, Li Y, Deng J, et al. Accurate, rapid and low-cost diagnosis of Mycoplasma pneumoniae via fast narrow-thermal-cycling denaturation bubble-mediated strand exchange amplification[J]. Anal Bioanal Chem, 2020, 412(30):8391-8399.
doi: 10.1007/s00216-020-02977-y
URL
|
[7] |
Leal SM Jr, Totten AH, Xiao L, et al. Evaluation of commercial molecular diagnostic methods for detection and determination of macrolide resistance in Mycoplasma pneumoniae[J]. J Clin Microbiol, 2020, 58(6):e00242-e00220.
|
[8] |
郭昱瑄, 张盛玉, 王熙业, 等. 肺炎支原体实验室诊断的研究进展[J]. 医学信息, 2019, 32(11):26-28.
|
|
Guo YX, Zhang SY, Wang XY, et al. Progress in laboratory diagnosis of Mycoplasma pneumoniae[J]. Med Inf, 2019, 32(11):26-28.
|
[9] |
Wang YC, Wang Y, et al. Establishment and application of a multiple cross displacement amplification coupled with nanoparticle-based lateral flow biosensor assay for detection of Mycoplasma pneumoniae[J]. Front Cell Infect Microbiol, 2019, 9:325.
doi: 10.3389/fcimb.2019.00325
URL
|
[10] |
姜苏, 李一荣. 等温扩增技术的原理及应用[J]. 中华检验医学杂志, 2020, 43(5):591-596.
|
|
Jiang S, Li YR. Principle and application of isothermal amplification technology[J]. Chin J Lab Med, 2020, 43(5):591-596.
|
[11] |
Notomi T, Okayama H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12):E63.
doi: 10.1093/nar/28.12.e63
pmid: 10871386
|
[12] |
Piepenburg O, Williams CH, et al. DNA detection using recombination proteins[J]. PLoS Biol, 2006, 4(7):e204.
doi: 10.1371/journal.pbio.0040204
URL
|
[13] |
Compton J. Nucleic acid sequence-based amplification[J]. Nature, 1991, 350(6313):91-92.
doi: 10.1038/350091a0
URL
|
[14] |
Walker GT, Little MC, Nadeau JG, et al. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system[J]. Proc Natl Acad Sci USA, 1992, 89(1):392-396.
doi: 10.1073/pnas.89.1.392
URL
|
[15] |
Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nat Genet, 1998, 19(3):225-232.
pmid: 9662393
|
[16] |
李若琳, 曹月, 等. 利用环介导等温扩增技术快速检测沙眼衣原体方法的建立[J]. 中国测试, 2020, 46(4):65-69.
|
|
Li RL, Cao Y, et al. Development of a loop-mediated isothermal amplification method for the rapid detection of Chlamydia trachomatis[J]. China Meas Test, 2020, 46(4):65-69.
|
[17] |
张娜, 乾义柯, 等. 基于重组酶聚合酶扩增技术(RPA)的葡萄卷叶伴随病毒3号检测方法[J]. 新疆农业科学, 2016, 53(2):302-308.
|
|
Zhang N, Qian YK, et al. Based on recombinase polymerase amplification, the method of detection of grapevine leafroll-associated virus 3[J]. Xinjiang Agric Sci, 2016, 53(2):302-308.
|
[18] |
刘爽, 黄广涛, 龚雅利, 等. 基于重组酶聚合酶扩增技术建立实时荧光法快速检测鲍曼不动杆菌的研究[J]. 中国病原生物学杂志, 2019, 14(3):311-314.
|
|
Liu S, Huang GT, et al. Rapid detection of Acinetobacter baumannii by real-time fluorescence method based on recombinase polymerase amplification[J]. J Pathog Biol, 2019, 14(3):311-314.
|
[19] |
Xia SM, Chen X. Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT-RPA[J]. Cell Discov, 2020, 6(1):37.
doi: 10.1038/s41421-020-0175-x
URL
|
[20] |
邓宇运, 李雁, 林杰锋. 荧光定量PCR与快速培养法在肺炎支原体临床检测应用比较[J]. 江苏预防医学, 2021, 32(3):363-364.
|
|
Deng YY, Li Y, Lin JF. Comparison of fluorescence quantitative PCR and rapid culture in clinical detection of Mycoplasma pneumoniae[J]. Jiangsu J Prev Med, 2021, 32(3):363-364.
|
[21] |
严春霞, 陆伟宏, 等. 环介导等温扩增在检测肺炎支原体中的临床应用[J]. 中国医学科学院学报, 2019, 41(2):203-207.
|
|
Yan CX, Lu WH, et al. Clinical application of loop-mediated isothermal amplification in detection of Mycoplasma pneumoni-ae[J]. Acta Acad Med Sin, 2019, 41(2):203-207.
|
[22] |
Kumar S. Mycoplasma pneumoniae:a significant but underrated pathogen in paediatric community-acquired lower respiratory tract infections[J]. Indian J Med Res, 2018, 147(1):23-31.
doi: 10.4103/ijmr.IJMR_1582_16
URL
|
[23] |
张立泽, 于少飞. 肺炎支原体病原学诊断方法研究进展[J]. 内蒙古医学杂志, 2020, 52(5):550-552.
|
|
Zhang LZ, Yu SF. Advances in etiological diagnosis of Mycoplasma pneumoniae[J]. Inn Mong Med J, 2020, 52(5):550-552.
|
[24] |
王良玉, 辛德莉. 肺炎支原体感染实验室诊断的研究进展[J]. 传染病信息, 2017, 30(1):51-55.
|
|
Wang LY, Xin DL. Research progress on laboratory diagnostic techniques for Mycoplasma pneumoniae infection[J]. Infect Dis Inf, 2017, 30(1):51-55.
|
[25] |
宋明, 赵芝娜, 徐慰倬. 肺炎支原体感染实验室检测的研究进展[J]. 中国感染控制杂志, 2016, 15(11):887-893.
|
|
Song M, Zhao ZN, Xu WZ. Advances in laboratory detection for Mycoplasma pneumoniae infection[J]. Chin J Infect Control, 2016, 15(11):887-893.
|
[26] |
彭凯岚, 曾焱华. 肺炎支原体P1蛋白的研究进展[J]. 中国人兽共患病学报, 2021, 37(4):362-367.
|
|
Peng KL, Zeng YH. Research progress on the P1 protein of Mycoplasma pneumoniae[J]. Chin J Zoonoses, 2021, 37(4):362-367.
|
[27] |
杨永强, 龙炫辉, 魏涛, 等. 重组酶聚合酶等温扩增快速检测肺炎支原体方法的建立和初步应用[J]. 现代生物医学进展, 2021, 21(11):2169-2173, 2178.
|
|
Yang YQ, Long XH, Wei T, et al. Establishment and preliminary application of rapid detection of Mycoplasma pneumoniae by recombinase polymerase amplification[J]. Prog Mod Biomed, 2021, 21(11):2169-2173, 2178.
|
[28] |
吴左次. 改良环介导等温扩增技术及其在肺炎支原体检测中的应用[D]. 长沙: 湖南大学, 2018.
|
|
Wu ZC. Improved loop-mediated isothermal amplification technique and its application in detection of Mycoplasma pneumoniae[D]. Changsha: Hunan University, 2018.
|
[29] |
史文强. 基于链交换扩增新方法对肺炎支原体核酸快速检测方法的研究[D]. 青岛: 青岛大学, 2019.
|
|
Shi WQ. Rapid nucleic acid detection of Mycoplasma pneumoniae based on a new strand exchange amplification method[D]. Qingdao: Qingdao University, 2019.
|
[30] |
吴亮, 夏雯, 阴晴, 等. 建立实时荧光LAMP法检测肺炎支原体[J]. 临床检验杂志, 2020, 38(1):7-10.
|
|
Wu L, Xia W, Yin Q, et al. Establishment of real-time fluorescent LAMP assay for Mycoplasma pneumonia[J]. Chin J Clin Lab Sci, 2020, 38(1):7-10.
|
[31] |
刘君丽. RTFQ-PCR检测儿童肺炎支原体16S rRNA的临床意义[J]. 检验医学与临床, 2018, 15(19):2919-2921, 2925.
|
|
Liu JL. Clinical significance of real-time fluorescence quantitative PCR for detection of Mycoplasma pneumoniae 16S rRNA in children[J]. Lab Med Clin, 2018, 15(19):2919-2921, 2925.
|