生物技术通报 ›› 2023, Vol. 39 ›› Issue (1): 253-263.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0449
收稿日期:
2022-04-12
出版日期:
2023-01-26
发布日期:
2023-02-02
作者简介:
张玲,女,硕士研究生,研究方向:微生物学;E-mail: 基金资助:
ZHANG Ling(), ZHANG Rong-yi, LIU Sheng-ke, TAN Zhi-qiong()
Received:
2022-04-12
Published:
2023-01-26
Online:
2023-02-02
摘要:
从土壤中筛选出抑制哈密瓜细菌性果斑病的拮抗菌株,明确其分类地位,测定其生长条件及防病效果。采用梯度稀释法及平板对峙法进行菌株的分离及筛选,综合形态学观察、生理生化测定以及分子鉴定等多方面对菌株进行鉴定,确定生防菌种属,并测定其最适生长条件,利用平板对峙法测定其抑菌作用,并分别采用针刺接种法、叶面喷施法对生防菌的离体叶片和盆栽防病试验进行测定。本研究从土样中共分离出196株细菌,经对峙筛选发现有20株细菌具有抑菌效果,其中编号为131、791的两株细菌对哈密瓜细菌性果斑病病原菌具有较好的平板拮抗效果,抑菌圈直径分别为(19.03±0.13)mm,(17.55±0.29)mm。经鉴定菌株131为沙福芽孢杆菌(Bacillus safensis),菌株791为贝莱斯芽孢杆菌(B. velezensis)。菌株131的最适生长条件为NB培养基,培养18 h,温度37℃,pH 7,接种量为2%。菌株791的最适生长条件为KB培养基,培养18 h,温度37℃,pH 6,接种量为1%。菌株131和791对哈密瓜细菌性果斑病的离体叶片防效分别为83.33%和87.53%,室内盆栽防效分别为69.86%和77.99%,同时也对多种病原真菌具有抑制作用。菌株131和791均为对哈密瓜细菌性果斑病具有较好防效的芽孢杆菌(Bacillus),对瓜类作物细菌性果斑病的防治提供了理论补充,奠定了果斑病害生物防治的基础。
张玲, 张荣意, 刘盛科, 谭志琼. 瓜类细菌性果斑病菌拮抗细菌的筛选及其抑菌作用[J]. 生物技术通报, 2023, 39(1): 253-263.
ZHANG Ling, ZHANG Rong-yi, LIU Sheng-ke, TAN Zhi-qiong. Screening of Antagonistic Bacteria for Bacterial Fruit Blotch of Cucurbits and Its Antibacterial Effects[J]. Biotechnology Bulletin, 2023, 39(1): 253-263.
类型Type | 引物Primer(5'-3') | 反应体系Reaction system | 循环条件Cyclic condition |
---|---|---|---|
16S rRNA | 27F: AGAGTTTGATCCTGGCTCAG 1492R: TACCTTGTTACGACTT | 2×Es Taq MasterMix 25 μL,ddH2O 19 μL,引物各2 μL,DNA模板2 μL | 95℃预变性5 min;94℃变性60 s,55℃退火90 s,72℃延伸1 min,共30个循环;72℃延伸10 min |
gyrB | UP-1S: GAAGTCATCATGACCGTTCTGC- AYGCNGGNGGNAARTTYGA UP-2Sr: AGCAGGGTACGGATGTGCGA- GCCRTCNACRTCNGCRTCNGTCAT | 2×Es Taq MasterMix 25 μL,ddH2O 21 μL,引物各1 μL,DNA模板2 μL | 94℃预变性10 min;94℃变性30 s,52℃退火30 s,72℃延伸1 min,共35个循环;72℃延伸10 min |
表1 PCR条件
Table 1 PCR conditions
类型Type | 引物Primer(5'-3') | 反应体系Reaction system | 循环条件Cyclic condition |
---|---|---|---|
16S rRNA | 27F: AGAGTTTGATCCTGGCTCAG 1492R: TACCTTGTTACGACTT | 2×Es Taq MasterMix 25 μL,ddH2O 19 μL,引物各2 μL,DNA模板2 μL | 95℃预变性5 min;94℃变性60 s,55℃退火90 s,72℃延伸1 min,共30个循环;72℃延伸10 min |
gyrB | UP-1S: GAAGTCATCATGACCGTTCTGC- AYGCNGGNGGNAARTTYGA UP-2Sr: AGCAGGGTACGGATGTGCGA- GCCRTCNACRTCNGCRTCNGTCAT | 2×Es Taq MasterMix 25 μL,ddH2O 21 μL,引物各1 μL,DNA模板2 μL | 94℃预变性10 min;94℃变性30 s,52℃退火30 s,72℃延伸1 min,共35个循环;72℃延伸10 min |
病情等级 Disease grade | 分类标准 Classification criterion |
---|---|
0级Level 0 | 病斑数量为0 |
1级Level 1 | 总的叶片面积中病斑占比< 5% |
2级Level 2 | 5% ≤总的叶片面积中病斑占比< 15% |
3级Level 3 | 15% ≤总的叶片面积中病斑占比< 25% |
4级Level 4 | 25% ≤总的叶片面积中病斑占比< 35% |
5级Level 5 | 35% ≤总的叶片面积中病斑占比< 45% |
6级Level 6 | 45% ≤总的叶片面积中病斑占比< 55% |
7级Level 7 | 55% ≤总的叶片面积中病斑占比< 65% |
8级Level 8 | 65% ≤总的叶片面积中病斑占比< 75% |
9级Level 9 | 总的叶片面积中病斑占比≥75% |
表2 病情等级分级标准
Table 2 Classification criteria of disease grade
病情等级 Disease grade | 分类标准 Classification criterion |
---|---|
0级Level 0 | 病斑数量为0 |
1级Level 1 | 总的叶片面积中病斑占比< 5% |
2级Level 2 | 5% ≤总的叶片面积中病斑占比< 15% |
3级Level 3 | 15% ≤总的叶片面积中病斑占比< 25% |
4级Level 4 | 25% ≤总的叶片面积中病斑占比< 35% |
5级Level 5 | 35% ≤总的叶片面积中病斑占比< 45% |
6级Level 6 | 45% ≤总的叶片面积中病斑占比< 55% |
7级Level 7 | 55% ≤总的叶片面积中病斑占比< 65% |
8级Level 8 | 65% ≤总的叶片面积中病斑占比< 75% |
9级Level 9 | 总的叶片面积中病斑占比≥75% |
图2 菌株131、791的菌落图及革兰氏染色图 A、B分别为菌株131的菌落图和革兰氏染色图;C、D分别为菌株791的菌落图和和革兰氏染色图
Fig. 2 Colony and Gram stain of strain 131 and 791 A and B are the colony map and Gram-stained map of strain 131,respectively;C and D are the colony map and Gram-stained map of strain 791,respectively
指标Index | 结果Result | |
---|---|---|
131 | 791 | |
革兰氏染色Gram stain | + | + |
接触酶试验Catalase test | + | + |
氧化酶试验Oxidase test | + | + |
厌氧生长Anaerobic growth | - | - |
2% NaCl | + | + |
10% NaCl | + | + |
明胶液化Gelatin liquefaction | + | + |
淀粉水解Amylohydrolysis | + | + |
甲基红试验MR | + | + |
V-P | + | + |
碳源利用Carbon source utilization | ||
棉子糖Raffinose | + | + |
半乳糖Galactose | + | + |
乳糖Lactose | + | + |
葡萄糖Glucose | + | + |
蔗糖Sucrose | + | + |
甘露醇Mannitol | + | + |
氮源利用Nitrogen source utilization | ||
硝酸铵Ammonium nitrate | + | + |
氯化铵Ammonium chloride | + | + |
尿素Urea | + | + |
硫酸铵Ammonium sulfate | + | + |
硝酸钾Potassium nitrate | + | + |
蛋白胨Peptone | + | + |
表3 菌株131、791的生理生化鉴定结果
Table 3 Physiological and biochemical identification resu-lts of strain 131 and 791
指标Index | 结果Result | |
---|---|---|
131 | 791 | |
革兰氏染色Gram stain | + | + |
接触酶试验Catalase test | + | + |
氧化酶试验Oxidase test | + | + |
厌氧生长Anaerobic growth | - | - |
2% NaCl | + | + |
10% NaCl | + | + |
明胶液化Gelatin liquefaction | + | + |
淀粉水解Amylohydrolysis | + | + |
甲基红试验MR | + | + |
V-P | + | + |
碳源利用Carbon source utilization | ||
棉子糖Raffinose | + | + |
半乳糖Galactose | + | + |
乳糖Lactose | + | + |
葡萄糖Glucose | + | + |
蔗糖Sucrose | + | + |
甘露醇Mannitol | + | + |
氮源利用Nitrogen source utilization | ||
硝酸铵Ammonium nitrate | + | + |
氯化铵Ammonium chloride | + | + |
尿素Urea | + | + |
硫酸铵Ammonium sulfate | + | + |
硝酸钾Potassium nitrate | + | + |
蛋白胨Peptone | + | + |
图4 菌株131基于16S rRNA基因和gyrB基因的系统发育树 Bacillus safensis:沙福芽孢杆菌;Bacillus pumilus:短小芽孢杆菌;Bacillus invictae:无敌芽孢杆菌;Bacillus australimaris:南海芽胞杆菌;Bacillus stratosphericus:同温层芽孢杆菌;Bacillus xiamenensis:厦门芽孢杆菌
Fig. 4 Phylogenetic tree of strain 131 based on 16S rRNA genes and gyrB genes
图5 菌株791基于16S rRNA基因和gyrB基因的系统发育树 Bacillus velezensis:贝莱斯芽孢杆菌;Bacillus atrophaeus:萎缩芽孢杆菌;Bacillus vallismortis:死谷芽胞杆菌;Bacillus halotolerans:耐盐芽胞杆菌;Bacillus axarquiensis:阿萨尔基亚芽孢杆菌
Fig. 5 Phylogenetic tree of strain 791 based on 16S rRNA genes and gyrB genes
图7 菌株131、791在不同条件下的生长状况 小写字母表示在0.05水平的差异显著性
Fig. 7 Growth status of strain 131 and 791 under different conditions Lower letters indicates the significance of the difference at the 0.05 level
图8 两株生防菌对哈密瓜细菌性果斑病的离体叶片效果 A:只接种水的叶片;B:只接种BFB菌液的叶片;C、D:分别接种菌株131、791菌液和BFB菌液的叶片。图中结果均为处理后第7天统计
Fig. 8 Effects of two biocontrol bacteria on the isolated leaves of bacterial fruit blotch of cantaloupe A:Leaf only inoculated with water. B:Leaf only inoculated with the BFB liquid. C and D:Leaves inoculated with the bacterial liquid of strain 131,791 and the BFB liquid,respectively. The results in the figure were counted on the seventh day after treatment
试验处理 Treatment | 病情指数 Disease index | 防治效果 Control efficacy/% |
---|---|---|
只喷水Spray water only | - | - |
只喷病菌菌液Spray BFB bacterial solution only | 77.41 ± 0.64a | - |
喷131菌液和病菌菌液 Spray 131 bacterial solution and BFB bacterial solution | 23.33 ± 1.11b | 69.86 |
喷791菌液和病菌菌液 Spray 791 bacterial solution and BFB bacterial solution | 17.04 ± 1.28c | 77.99 |
表4 菌株131和791的盆栽防病效果
Table 4 Control efficacy of strain 131 and 791 in potting
试验处理 Treatment | 病情指数 Disease index | 防治效果 Control efficacy/% |
---|---|---|
只喷水Spray water only | - | - |
只喷病菌菌液Spray BFB bacterial solution only | 77.41 ± 0.64a | - |
喷131菌液和病菌菌液 Spray 131 bacterial solution and BFB bacterial solution | 23.33 ± 1.11b | 69.86 |
喷791菌液和病菌菌液 Spray 791 bacterial solution and BFB bacterial solution | 17.04 ± 1.28c | 77.99 |
图9 两株菌株对细菌性果斑病的盆栽防治效果 A:只喷水;B:只喷BFB菌液;C:同时喷131菌液和BFB菌液;D:同时喷791菌液和BFB菌液。图中结果均为处理后第7天统计
Fig. 9 Control efficacy of two strains against BFB in potting A:Spray water only. B:Spray BFB bacterial solution only. C:Simultaneously spray 131 bacterial solution and BFB bacterial solution. D:Simultaneously spray 791 bacterial solution and BFB bacterial solution. The results in the figure were counted on the seventh day after treatment
病原真菌 Pathogenic fungus | 抑菌直径 Inhibition diameter/mm | 抑菌率 Inhibition rate/% | ||
---|---|---|---|---|
131 | 791 | 131 | 791 | |
小麦赤霉病病菌 F. graminearum | 0 | 10.50±0.50c | 0 | 12.35 |
火龙果炭疽病病菌 C. gloeosporioides | 7.10±0.10b | 11.00±0.41c | 8.35 | 12.94 |
黄瓜叶斑病病菌 P. cichorii | 8.40±0.63b | 21.25±0.75a | 9.88 | 25.00 |
甜瓜蔓枯病病菌 D. bryoniae | 0 | 16.25±0.63b | 0 | 19.12 |
荔枝霜疫霉 P. litchii | 12.00±1.15a | 14.00±1.63b | 14.12 | 16.47 |
表5 菌株131、791对其它病原菌的抑菌作用
Table 5 Inhibition percentage of strain 131,791 against other pathogen
病原真菌 Pathogenic fungus | 抑菌直径 Inhibition diameter/mm | 抑菌率 Inhibition rate/% | ||
---|---|---|---|---|
131 | 791 | 131 | 791 | |
小麦赤霉病病菌 F. graminearum | 0 | 10.50±0.50c | 0 | 12.35 |
火龙果炭疽病病菌 C. gloeosporioides | 7.10±0.10b | 11.00±0.41c | 8.35 | 12.94 |
黄瓜叶斑病病菌 P. cichorii | 8.40±0.63b | 21.25±0.75a | 9.88 | 25.00 |
甜瓜蔓枯病病菌 D. bryoniae | 0 | 16.25±0.63b | 0 | 19.12 |
荔枝霜疫霉 P. litchii | 12.00±1.15a | 14.00±1.63b | 14.12 | 16.47 |
[1] | 谢慧婷, 李战彪, 秦碧霞, 等. 广西甜瓜细菌性果斑病病原鉴定及16S rDNA序列分析[J]. 南方农业学报, 2016, 47(10): 1698-1703. |
Xie HT, Li ZB, Qin BX, et al. Identification of pathogen causing melon bacterial fruit blotch in Guangxi and analysis of its 16S rDNA sequence[J]. J South Agric, 2016, 47(10): 1698-1703. | |
[2] | 刘宝玉, 孙福庆, 杨玉文, 等. 化学药剂防控厚皮甜瓜细菌性果斑病的研究与应用[J]. 中国瓜菜, 2020, 33(9): 74-78. |
Liu BY, Sun FQ, Yang YW, et al. Study and application of chemical agents in prevention and control of bacteria fruit blotch disease in muskmelon[J]. China Cucurbits Veg, 2020, 33(9): 74-78. | |
[3] | 唐思琪, 孙小武, 何长征, 等. 25种药剂处理对西瓜种传细菌性果斑病菌的抑制效果[J]. 中国瓜菜, 2021, 34(11): 17-23. |
Tang SQ, Sun XW, He CZ, et al. Inhibitory effect of 25 bactericide on watermelon bacterial fruit blotch by seed treatment[J]. China Cucurbits Veg, 2021, 34(11): 17-23. | |
[4] | 杜伟, 樊世蕊, 杨明进, 等. 不同药剂对露地西瓜果斑病的防效及产量影响[J]. 浙江农业科学, 2022, 63(5): 1088-1090, 1097. |
Du W, Fan SR, Yang MJ, et al. Effect of different medicaments on bacterial fruit blotch control efficiency and yield of watermelon[J]. J Zhejiang Agric Sci, 2022, 63(5): 1088-1090, 1097. | |
[5] | 乔俊卿, 陈志谊, 梁雪杰, 等. 枯草芽孢杆菌Bs916防治番茄青枯病[J]. 中国生物防治学报, 2016, 32(2): 229-234. |
Qiao JQ, Chen ZY, Liang XJ, et al. Biocontrol efficacy on tomato bacterial wilt by Bacillus subtilis Bs916[J]. Chin J Biol Control, 2016, 32(2): 229-234. | |
[6] | 武芳, 李勇, 路兆军, 等. 6株拮抗细菌对哈密瓜细菌性果斑病的大田防效[J]. 种业导刊, 2019(12): 19-24. |
Wu F, Li Y, Lu ZJ, et al. Field control effect of six antagonistic bacteria against bacterial fruit spot of Hami melon[J]. J Seed Ind Guide, 2019(12): 19-24. | |
[7] | 谢心悦, 贾慧慧, 杨海清, 等. 芽胞杆菌BJ-10的鉴定及其抑菌活性与防病作用[J]. 北京农学院学报, 2020, 35(2): 1-5. |
Xie XY, Jia HH, Yang HQ, et al. Study on the identification, antimicrobial activities and biocontrol abilities of Bacillus sp. strain BJ-10[J]. J Beijing Univ Agric, 2020, 35(2): 1-5. | |
[8] | 吴丽媛, 刘宝玉, 王钰杰, 等. 甜瓜细菌性果斑病生防菌株BW-6的筛选和鉴定[J]. 植物保护, 2014, 40(1): 43-47, 53. |
Wu LY, Liu BY, Wang YJ, et al. Isolation and identification of bio-control bacterial strain BW-6 against bacterial fruit blotch of sweet melon[J]. Plant Prot, 2014, 40(1): 43-47, 53. | |
[9] | 贾慧慧, 谢心悦, 潘园园, 等. 芽胞杆菌BJ-6的鉴定及对甜瓜细菌性果斑病的防治[J]. 微生物学报, 2020, 60(5): 982-991. |
Jia HH, Xie XY, Pan YY, et al. Identification of Bacillus sp. BJ-6 for biocontrol of bacterial fruit blotch of melon[J]. Acta Microbiol Sin, 2020, 60(5): 982-991. | |
[10] | 来航线, 杨保伟, 邱学礼, 等. 9株芽孢杆菌的初步分离鉴定与拮抗性试验[J]. 西北农林科技大学学报:自然科学版, 2004, 32(7): 93-96. |
Lai HX, Yang BW, Qiu XL, et al. Isolation indentification and antibiotic experiment ofnine strains of Bacillus cereus. B. C[J]. J Northwest Sci Tech Univ Agric For, 2004, 32(7): 93-96. | |
[11] | 马龙, 杨莉莉, 马兴, 等. 马铃薯黑痣病生防菌的筛选鉴定及生长条件研究[J]. 中国马铃薯, 2017, 31(4): 227-233. |
Ma L, Yang LL, Ma X, et al. Isolation, identification and growth condition of antagonistic strains against potato black scurf[J]. Chin Potato J, 2017, 31(4): 227-233. | |
[12] | 高平, 王天竺, 王玉新, 等. 薰衣草间作两种十字花科蔬菜对土壤微生态的影响[J]. 广东蚕业, 2020, 54(9): 18-20. |
Gao P, Wang TZ, Wang YX, et al. Effects of two cruciferous vegetables on intercropping of lavender on soil microecology[J]. Guangdong Seric, 2020, 54(9): 18-20. | |
[13] | 贾凤安, 陈亮, 陈立, 等. 大棚甜瓜三种主要真菌病害拮抗细菌的筛选与鉴定[J]. 植物保护学报, 2010, 37(6): 505-510. |
Jia FG, Chen L, Chen L, et al. Isolation and characterization of antagonistic bacteria against three major fungal pathogens of greenhouse melon[J]. J Plant Prot, 2010, 37(6): 505-510. | |
[14] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press, 2001. | |
[15] | 陈香, 唐彤彤, 孙星, 等. 对黄瓜枯萎病具防效的海洋源芽孢杆菌Y3F的鉴定[J]. 微生物学通报, 2017, 44(10): 2370-2379. |
Chen X, Tang TT, Sun X, et al. Identification of marine Bacillus isolate Y3F suppressing Fusarium wilt of cucumber[J]. Microbiol China, 2017, 44(10): 2370-2379. | |
[16] | 蔡红艳, 方玉洁, 于可艺, 等. 基于16S rRNA和gyrB基因的施万菌种水平鉴定分析[J]. 疾病监测, 2021, 36(1): 42-47. |
Cai HY, Fang YJ, Yu KY, et al. Identification of Shewanella at species level based on 16S rRNA and gyrB genes[J]. Dis Surveillance, 2021, 36(1): 42-47. | |
[17] |
Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees[J]. Mol Biol Evol, 1987, 4(4): 406-425.
doi: 10.1093/oxfordjournals.molbev.a040454 pmid: 3447015 |
[18] | 吕树萍, 米兰芳, 王学雄, 等. 赣南地区部分脐橙品种对溃疡病的抗性[J]. 北方园艺, 2020(7): 36-42. |
Lyu SP, Mi LF, Wang XX, et al. Resistance of some navel orange varieties to canker disease in Gannan region[J]. North Hortic, 2020(7): 36-42. | |
[19] | 李新宇, 李磊, 石延霞, 等. 黄瓜棒孢叶斑病拮抗细菌的筛选、鉴定及防治效果[J]. 植物保护学报, 2020, 47(3): 620-627. |
Li XY, Li L, Shi YX, et al. Screening, identification and control effects of antagonistic bacteria against cucumber Corynespora leaf spot[J]. J Plant Prot, 2020, 47(3): 620-627. | |
[20] |
黄华毅, 王佳琳, 马荣, 等. 枯草芽孢杆菌STO-12抑菌活性及其抑菌物质分析[J]. 浙江农业学报, 2017, 29(1): 81-88.
doi: 10.3969/j.issn.1004-1524.2017.01.12 |
Huang HY, Wang JL, Ma R, et al. Antifungal activities of Bacillus subtilis STO-12 and analysis on its antifungal substances[J]. Acta Agric Zhejiangensis, 2017, 29(1): 81-88. | |
[21] |
Santoyo G, Orozco-Mosqueda MDC, Govindappa M. Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas:a review[J]. Biocontrol Sci Technol, 2012, 22(8): 855-872.
doi: 10.1080/09583157.2012.694413 URL |
[22] | 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
Zhang DF, Gao YX, Wang YJ, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiol China, 2020, 47(11): 3634-3649. | |
[23] | 任鹏举, 谢永丽, 张岩, 等. 枯草芽孢杆菌OKB105产生的surfactin防治烟草花叶病毒病及其机理研究[J]. 中国生物防治学报, 2014, 30(2): 216-221. |
Ren PJ, Xie YL, Zhang Y, et al. Effect and mechanism of controlling TMV disease on tobacco by surfactin produced by Bacillus subtilis OKB105[J]. Chin J Biol Control, 2014, 30(2): 216-221. | |
[24] | 周维, 田丹丹, 杨扬, 等. 解淀粉芽孢杆菌G9R-3脂肽类化合物抑制香蕉枯萎病菌机理及防效评价[J]. 西南农业学报, 2019, 32(8): 1810-1816. |
Zhou W, Tian DD, Yang Y, et al. Antifungal mechanism and control effects on Fusarium oxysporum f. sp. cubense race 4 of lipopeptides produced by Bacillus amyloliquefaciens G9R-3[J]. Southwest China J Agric Sci, 2019, 32(8): 1810-1816. | |
[25] | 杨可, 郑柯斌, 黄晓慧, 等. 海洋生境贝莱斯芽孢杆菌TCS001的鉴定及抑真菌活性[J]. 农药学学报, 2018, 20(3): 333-339. |
Yang K, Zheng KB, Huang XH, et al. Identification and antifungal activity of marine Bacillus velezensis strain TCS001[J]. Chin J Pestic Sci, 2018, 20(3): 333-339. | |
[26] | 姚锦爱, 黄鹏, 赖宝春, 等. 贝莱斯芽胞杆菌ZZBV-3的鉴定及其对草莓根腐病的防效[J]. 中国生物防治学报, 2021, 37(1): 172-177. |
Yao JN, Huang P, Lai BC, et al. Identification and control efficacy of Bacillus velezensis ZZBV-3 against strawberry root rot[J]. Chin J Biol Control, 2021, 37(1): 172-177. | |
[27] | 孙平平, 崔建潮, 贾晓辉, 等. 贝莱斯芽孢杆菌L-1对梨灰霉和青霉病菌的抑制作用评价及全基因组分析[J]. 微生物学报, 2018, 58(9): 1637-1646. |
Sun PP, Cui JC, Jia XH, et al. Complete genome analysis of Bacillus velezensis L-1 and its inhibitory effect on pear gray and blue mold[J]. Acta Microbiol Sin, 2018, 58(9): 1637-1646. | |
[28] | 蔡高磊, 张凡, 欧阳友香, 等. 贝莱斯芽孢杆菌(Bacillus velezensis)研究进展[J]. 北方园艺, 2018(12): 162-167. |
Cai GL, Zhang F, Ouyang YX, et al. Research progress on Bacillus velezensis[J]. North Hortic, 2018(12): 162-167. | |
[29] | 张梦君, 黎继烈, 申爱荣, 等. 亚麻立枯病拮抗菌的筛选、生防效果及发酵条件优化[J]. 微生物学通报, 2017, 44(5): 1099-1107. |
Zhang MJ, Li JL, Shen AR, et al. Screening, biocontrol effect and optimization of fermentation conditions of an antagonistic bacteria against Flax[J]. Microbiol China, 2017, 44(5): 1099-1107. | |
[30] | 邢梦玉. 两株链霉菌对荔枝霜疫病的防病潜力和防病机理研究[D]. 广州: 华南农业大学, 2017. |
Xing MY. Study on biocontrol potential and antifungal mechanism of Streptomyces tjga-19 and bwl-h1 against Litchi downy blight[D]. Guangzhou: South China Agricultural University, 2017. | |
[31] | 梁艳琼, 吴伟怀, 习金根, 等. 解淀粉芽胞杆菌JNC2摇瓶发酵条件优化[J]. 草业科学, 2019, 36(8): 2159-2167. |
Liang YQ, Wu WH, Xi JG, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens JNC2 in flask[J]. Pratacultural Sci, 2019, 36(8): 2159-2167. | |
[32] | 洪鹏, 安国栋, 胡美英, 等. 解淀粉芽孢杆菌HF-01发酵条件优化[J]. 中国生物防治学报, 2013, 29(4): 569-578. |
Hong P, Anguo D, Hu MY, et al. Optimizing fermentation condition for Bacillus amyloliquefaciens HF-01[J]. Chin J Biol Control, 2013, 29(4): 569-578. |
[1] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[2] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[3] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[4] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[5] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[6] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[7] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[8] | 王一帆, 候林慧, 常永春, 杨亚杰, 陈天, 赵祝跃, 荣二花, 吴玉香. 陆地棉与拟似棉异源六倍体的合成与性状鉴定[J]. 生物技术通报, 2023, 39(5): 168-176. |
[9] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[10] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[11] | 陈晓萌, 张雪静, 张欢, 张宝江, 苏艳. 重组牛乳源金黄色葡萄球菌GapC蛋白优势B细胞抗原表位的预测和筛选[J]. 生物技术通报, 2023, 39(5): 306-313. |
[12] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[13] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[14] | 赵孟良, 郭怡婷, 任延靖. 菊芋WRKY转录因子家族基因的鉴定及分析[J]. 生物技术通报, 2023, 39(2): 116-125. |
[15] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||