生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 71-80.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0759
高凯月1,2,3(), 郭雨婷1,2,3, 杜奕谋1,2,3, 郑小梅2,3,4(), 马欣荣1(), 赵伟5, 郑平2,3,4, 孙际宾2,3,4
收稿日期:
2023-08-09
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
郑小梅,女,博士,副研究员,研究方向:真菌系统与合成生物学;E-mail: zheng_xm@tib.cas.cn;作者简介:
高凯月,女,硕士研究生,研究方向:真菌合成生物学;E-mail: gaoky@tib.cas.cn郭雨婷为本文共同第一作者
基金资助:
GAO Kai-yue1,2,3(), GUO Yu-ting1,2,3, DU Yi-mou1,2,3, ZHENG Xiao-mei2,3,4(), MA Xin-rong1(), ZHAO Wei5, ZHENG Ping2,3,4, SUN Ji-bin2,3,4
Received:
2023-08-09
Published:
2023-12-26
Online:
2024-01-11
摘要:
黑曲霉是有机酸与酶制剂重要的工业生产菌株,具有强大的水解酶系与葡萄糖转运系统,可快速响应胞外碳源变化,摄取环境中葡萄糖供给细胞生长和产物合成。作为重要的碳源底物与关键的信号分子,葡萄糖的摄取吸收直接影响黑曲霉细胞生长与发酵性能。针对目前丝状真菌缺乏简便葡萄糖吸收能力定量表征方法的问题,本文以2-(N-(7-硝基苯并-2-氧杂-1,3-二唑-4-氨基)-2-脱氧葡萄糖(2-NBDG)作为葡萄糖吸收探针,通过将预培养的黑曲霉孢子与2-NBDG孵育后,利用荧光显微成像与流式细胞分析,建立了丝状真菌的葡萄糖吸收的定量检测方法。结果发现,2-NBDG 的最佳使用浓度为150 μmol/L,最佳孵育时间为4 h。进一步利用该定量分析方法,发现低亲和力葡萄糖转运蛋白MstC的过表达使黑曲霉葡萄糖吸收提高1.44倍,同时在前期研究的基础上,利用多序列比对分析,设计了MstC的突变体R188K,通过检测发现该点突变可直接导致MstC葡萄糖转运活性的丧失,这表明Arg188是影响MstC葡萄糖转运能力的关键氨基酸位点。本文葡萄糖摄取定量检测方法的建立及其在MstC功能研究上的应用,不仅加深了丝状真菌葡萄糖吸收的定量认识,也为葡萄糖转运系统的改造优化提供了技术支撑。
高凯月, 郭雨婷, 杜奕谋, 郑小梅, 马欣荣, 赵伟, 郑平, 孙际宾. 黑曲霉葡萄糖吸收定量检测的方法建立及其在MstC功能研究中的应用[J]. 生物技术通报, 2023, 39(12): 71-80.
GAO Kai-yue, GUO Yu-ting, DU Yi-mou, ZHENG Xiao-mei, MA Xin-rong, ZHAO Wei, ZHENG Ping, SUN Ji-bin. A Quantitative Detection Approach for Glucose Uptake in Aspergillus niger: A Case Study of Glucose Transporter MstC[J]. Biotechnology Bulletin, 2023, 39(12): 71-80.
Strains/Plasmids | Description | Source |
---|---|---|
Escherichia coli Trans1-T1 | F- φ80(lacZ), ΔM15, ΔlacX74, hsdR(rkmk+), ΔrecA 1398, endA, tonA | TransGen. |
Saccharomyces cerevisiae EBY.VW4000 | CEN.PK2-1C, hxt1-17, stl1, agt1, ydl247w, yjr160c, gal2 | [12] |
S. cerevisiae EBY.MstC | EBY.VW4000 with pRS-MstC | This study |
S. cerevisiae EBY.MstCR188K | EBY.VW4000 with pRS-MstCR188K | This study |
A. niger D353.8 | pyrG::hph, kusA::hph, HygR | [13] |
A. niger OE. MstC | D353.8 with the PgpdA:mstC expression cassette | This study |
A. niger OE. MstCR188K | D353.8 with the PgpdA:mstCR188K expression cassette | This study |
pRS426 | Ppgk:gfp:Tpgk, Ura, AmpR | [12] |
pRS-MstC | pRS426 carring the mstC gene | This study |
pRS-MstCR188K | pRS426 carring the mstCR188K gene | This study |
pXMD7 | PgpdA:TtrpC, pyrG, AmpR | [14] |
pOE-MstC | pOE carring PgpdA-mstC expression cassette | This study |
pOE-MstCR188K | pOE carring PgpdA-mstCR188K expression cassette | This study |
表1 本研究所用的菌株与质粒
Table 1 Strains and plasmids used in this study
Strains/Plasmids | Description | Source |
---|---|---|
Escherichia coli Trans1-T1 | F- φ80(lacZ), ΔM15, ΔlacX74, hsdR(rkmk+), ΔrecA 1398, endA, tonA | TransGen. |
Saccharomyces cerevisiae EBY.VW4000 | CEN.PK2-1C, hxt1-17, stl1, agt1, ydl247w, yjr160c, gal2 | [12] |
S. cerevisiae EBY.MstC | EBY.VW4000 with pRS-MstC | This study |
S. cerevisiae EBY.MstCR188K | EBY.VW4000 with pRS-MstCR188K | This study |
A. niger D353.8 | pyrG::hph, kusA::hph, HygR | [13] |
A. niger OE. MstC | D353.8 with the PgpdA:mstC expression cassette | This study |
A. niger OE. MstCR188K | D353.8 with the PgpdA:mstCR188K expression cassette | This study |
pRS426 | Ppgk:gfp:Tpgk, Ura, AmpR | [12] |
pRS-MstC | pRS426 carring the mstC gene | This study |
pRS-MstCR188K | pRS426 carring the mstCR188K gene | This study |
pXMD7 | PgpdA:TtrpC, pyrG, AmpR | [14] |
pOE-MstC | pOE carring PgpdA-mstC expression cassette | This study |
pOE-MstCR188K | pOE carring PgpdA-mstCR188K expression cassette | This study |
Primer name | Primer sequence(5'-3') | Source |
---|---|---|
MstC-F1 | gcatactagtATGGGTGTCTCTAATATGATGTC | This study |
MstC-R1 | gcctaagcttCTCGCGGAGCTCAGTGGG | This study |
MstCR188K-F MstCR188K-R | CTGCTCCCCGTCAGGTCAAGGGTGCCATGGTCAGTGCCTTC CACTGACCATGGCACCCTTGACCTGACGGGGAGCAGATTC | This study |
MstC-F2 | tcaccggatcccatatgttaattaaATGGGTGTCTCTAATATGATGTC | This study |
MstC-R2 | atctactcccgggtacgtaactagtCTACTCGCGGAGCTCAGTGGG | This study |
pRS-F | TACGACTCACTATAGGGCGAA | This study |
pRS-R | AAACAGAATTGTCCGAATCGT | This study |
表2 本研究所用引物及其序列
Table 2 Primers and their sequences used in this study
Primer name | Primer sequence(5'-3') | Source |
---|---|---|
MstC-F1 | gcatactagtATGGGTGTCTCTAATATGATGTC | This study |
MstC-R1 | gcctaagcttCTCGCGGAGCTCAGTGGG | This study |
MstCR188K-F MstCR188K-R | CTGCTCCCCGTCAGGTCAAGGGTGCCATGGTCAGTGCCTTC CACTGACCATGGCACCCTTGACCTGACGGGGAGCAGATTC | This study |
MstC-F2 | tcaccggatcccatatgttaattaaATGGGTGTCTCTAATATGATGTC | This study |
MstC-R2 | atctactcccgggtacgtaactagtCTACTCGCGGAGCTCAGTGGG | This study |
pRS-F | TACGACTCACTATAGGGCGAA | This study |
pRS-R | AAACAGAATTGTCCGAATCGT | This study |
图1 不同2-NBDG孵育浓度对葡萄糖吸收荧光检测的影响 A-C为黑曲霉孢子与2-NBDG孵育不同浓度后的荧光成像检测;D-F为黑曲霉孢子与2-NBDG孵育不同浓度后的流式细胞检测。A与D为黑曲霉孢子在100 μmol/L 2-NBDG孵育后的荧光检测结果;B与E为黑曲霉孢子在150 μmol/L 2-NBDG孵育后的荧光检测结果;C与F为黑曲霉孢子在200 μmol/L 2-NBDG孵育后的荧光检测结果。FI表示所检测的105个孢子的平均荧光强度,Q2表示当荧光强度FITC-H大于103的孢子占总孢子数的比例,下同
Fig. 1 Effect of 2-NBDG concentration on the glucose uptake in A. niger A-C: The fluorescence imaging of A. niger spores incubated with different concentrations of 2-NBDG. D-F: Flow cytometric detection of A. niger spores incubated with different concentrations of 2-NBDG. A and D: 100 μmol/L 2-NBDG; B and E: 150 μmol/L 2-NBDG; C and F: 200 μmol/L 2-NBDG. FI refers to the average fluorescence intensity of 105 spores. Q2 refers to the proportion of spores with fluorescence intensity FITC-H(>103)to the total spore count, the same below
图2 不同2-NBDG孵育时间对葡萄糖吸收荧光检测的影响 A-C为黑曲霉孢子与2-NBDG孵育不同时间后的荧光成像检测;D-F为黑曲霉孢子与2-NBDG孵育不同时间后的流式细胞检测。A与D为黑曲霉孢子与2-NBDG孵育0 h后的荧光检测结果;B与E为黑曲霉孢子与2-NBDG孵育 2 h后的荧光检测结果;C与F与2-NBDG孵育4 h后的荧光检测结果
Fig. 2 Effect of 2-NBDG incubation time on the glucose uptake fluorescence detection in A. niger A-C: The fluorescence imaging of spores incubated 2-NBDG for different incubation time. D-F: Flow cytometric detection of spores incubated 2-NBDG for different incubation time. A and D: 0 h; B and E: 2 h; C and F: 4 h
图4 黑曲霉MstC过表达菌株的葡萄糖吸收能力检测 A-B为黑曲霉孢子与150 μmol/L 2-NBDG孵育4 h后的荧光成像检测;C-D为黑曲霉孢子与150 μmol/L 2-NBDG孵育4 h后的流式细胞检测。A与C为出发菌株D353.8荧光检测结果;B与D为MstC过表达菌株OE.MstC的荧光检测结果
Fig. 4 Glucose uptake capacity detection based on MstC-overexpressed strain A. niger A-B: The fluorescence imaging of spores incubated 150 μmol/L 2-NBDG for 4 h. C-D: Flow cytometric detection of spores incubated 150 μmol/L 2-NBDG for 4 h.A and C: The parent strain D353.8; B and D: MstC overexpression strain OE.MstC
图5 葡萄糖转运蛋白MstC的序列结构分析与葡萄糖转运能力检测 A为葡萄糖转运蛋白MstC的序列结构分析;B为酵母重组菌株EBY.MstC与EBY.MstCR188K在不同葡萄糖浓度下的生长情况。在多序列比对中,AnMstC与AnMstA分别代表来自黑曲霉的内源葡萄糖转运蛋白MstC与MstA,AndMstE代表来自构巢曲霉的葡萄糖转运蛋白MstE,NcGlt1、NcHgt1与NcHgt2分别代表来自粗燥脉孢霉葡萄糖转运蛋白Glt1、Hgt1与Hgt2
Fig. 5 Structure analysis and glucose transport capacity detection of MstC A is the sequence structure analysis of glucose transporter protein MstC, and B is the growth of yeast recombinant strains EBY.MstC and EBY.MstCR188K at different glucose concentrations. In multiple sequence alignment, AnMstC and AnMstA represent endogenous glucose transporters MstC and MstA from A. niger, AndMstE represents glucose transporter MstE from A. niger, and NcGlt1, NcHgt1, and NcHgt2 represent glucose transporters Glt1, Hgt1, and Hgt2 from A. niger, respectively
图6 黑曲霉MstC突变体过表达菌株OE.MstCR188K的葡萄糖吸收检测 A-B为黑曲霉孢子与150 μmol/L 2-NBDG孵育4 h后的荧光成像检测;C-D为黑曲霉孢子与150 μmol/L 2-NBDG孵育4 h后的流式细胞检测。A与C为出发菌株D353.8荧光检测结果;B与D为MstC突变体过表达菌株OE.MstCR188K的荧光检测结果
Fig. 6 Glucose uptake capacity detection of A. niger MstC point mutant over-expressed strain OE.MstCR188K A-B: The fluorescence imaging of spores incubated 150 μmol/L 2-NBDG for 4 h. C-D: Flow cytometric detection of spores incubated 150 μmol/L 2-NBDG for 4 h. A, C: The parent strain D353.8; B, D: MstC point mutant overexpression strain MstCR188K
[1] |
Tong ZY, Zheng XM, Tong Y, et al. Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era[J]. Microb Cell Fact, 2019, 18(1): 28.
doi: 10.1186/s12934-019-1064-6 |
[2] |
Meyer V, Andersen MR, Brakhage AA, et al. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper[J]. Fungal Biol Biotechnol, 2016, 3: 6.
doi: 10.1186/s40694-016-0024-8 pmid: 28955465 |
[3] | Torres NV, Riol-Cimas JM, Wolschek M, et al. Glucose transport by Aspergillus niger: the low-affinity carrier is only formed during growth on high glucose concentrations[J]. Appl Microbiol Biotechnol, 1996, 44(6): 790-794. |
[4] |
de Vries RP, Riley R, Wiebenga A, et al. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus[J]. Genome Biol, 2017, 18(1): 28.
doi: 10.1186/s13059-017-1151-0 |
[5] |
Vankuyk PA, Diderich JA, MacCabe AP, et al. Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH[J]. Biochem J, 2004, 379(Pt 2): 375-383.
doi: 10.1042/bj20030624 URL |
[6] |
Jørgensen TR, VanKuyk PA, Poulsen BR, et al. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter[J]. Microbiology, 2007, 153(Pt 6): 1963-1973.
doi: 10.1099/mic.0.2006/005090-0 pmid: 17526853 |
[7] |
Xu YX, Zhou YT, Cao W, et al. Improved production of malic acid in Aspergillus niger by abolishing citric acid accumulation and enhancing glycolytic flux[J]. ACS Synth Biol, 2020, 9(6): 1418-1425.
doi: 10.1021/acssynbio.0c00096 URL |
[8] |
Bleichrodt RJ, Vinck A, Read ND, et al. Selective transport between heterogeneous hyphal compartments via the plasma membrane lining septal walls of Aspergillus niger[J]. Fungal Genet Biol, 2015, 82: 193-200.
doi: 10.1016/j.fgb.2015.06.010 URL |
[9] |
Roy A, Dement AD, Cho KH, et al. Assessing glucose uptake through the yeast hexose transporter 1(Hxt1)[J]. PLoS One, 2015, 10(3): e0121985.
doi: 10.1371/journal.pone.0121985 URL |
[10] |
Yoshioka K, Takahashi H, Homma T, et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli[J]. Biochim Biophys Acta, 1996, 1289(1): 5-9.
pmid: 8605231 |
[11] |
O'Neil RG, Wu L, Mullani N. Uptake of a fluorescent deoxyglucose analog(2-NBDG)in tumor cells[J]. Mol Imaging Biol, 2005, 7(6): 388-392.
pmid: 16284704 |
[12] |
Wieczorke R, Krampe S, Weierstall T, et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae[J]. FEBS Lett, 1999, 464(3): 123-128.
doi: 10.1016/s0014-5793(99)01698-1 pmid: 10618490 |
[13] |
Zhang LH, Zheng XM, Cairns TC, et al. Disruption or reduced expression of the orotidine-5'-decarboxylase gene pyrG increases citric acid production: a new discovery during recyclable genome editing in Aspergillus niger[J]. Microb Cell Fact, 2020, 19(1): 76.
doi: 10.1186/s12934-020-01334-z |
[14] |
Lu YD, Zheng XM, Wang Y, et al. Evaluation of Aspergillus niger six constitutive strong promoters by fluorescent-auxotrophic selection coupled with flow cytometry: a case for citric acid production[J]. J Fungi, 2022, 8(6): 568.
doi: 10.3390/jof8060568 URL |
[15] |
Basenko EY, Pulman JA, Shanmugasundram A, et al. FungiDB: an integrated bioinformatic resource for fungi and oomycetes[J]. J Fungi, 2018, 4(1): 39.
doi: 10.3390/jof4010039 URL |
[16] |
Cairns TC, Zheng XM, Zheng P, et al. Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories[J]. Biotechnol Biofuels, 2019, 12: 77.
doi: 10.1186/s13068-019-1400-4 pmid: 30988699 |
[17] |
Yang YJ, Liu Y, Liu DD, et al. Development of a flow cytometry-based plating-free system for strain engineering in industrial fungi[J]. Appl Microbiol Biotechnol, 2022, 106(2): 713-727.
doi: 10.1007/s00253-021-11733-w |
[18] |
Wang B, Li JG, Gao JF, et al. Identification and characterization of the glucose dual-affinity transport system in Neurospora crassa: pleiotropic roles in nutrient transport, signaling, and carbon catabolite repression[J]. Biotechnol Biofuels, 2017, 10: 17.
doi: 10.1186/s13068-017-0705-4 URL |
[1] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[2] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[3] | 张原, 张雪萍, 张月倩, 李晓娟. 单分子荧光检测技术的发展及其在植物生物学研究中的应用[J]. 生物技术通报, 2022, 38(1): 33-43. |
[4] | 李红叶, 陈立佼, 刘明丽, 郭天杰, 王道平, 潘映红, 赵明. 黑曲霉单宁酶基因Tan2克隆与表达[J]. 生物技术通报, 2021, 37(3): 44-52. |
[5] | 孟晓建, 于建东, 郑小梅, 郑平, 李志敏, 孙际宾, 叶勤. 小分子代谢物对黑曲霉己糖激酶和丙酮酸激酶的酶活调控[J]. 生物技术通报, 2021, 37(12): 180-190. |
[6] | 陈浩宇, 徐瑞涛, 程志翔, 高强, 张健. H2O2对黑曲霉氧化胁迫机理的研究[J]. 生物技术通报, 2018, 34(4): 201-207. |
[7] | 魏姜勉, 鲁雷震, 焦国宝, 刘家扬, 陆隽鹤. 黑曲霉发酵菌渣对臧红T的吸附研究[J]. 生物技术通报, 2017, 33(10): 191-198. |
[8] | 朱永瑞, 曾柏全, 曾磊, 刘辉. 黑曲霉C112纤维二糖酶基因的克隆与生物信息学分析[J]. 生物技术通报, 2016, 32(2): 116-122. |
[9] | 张亮, 花尔并, 王华明. 粉红黏帚霉糖化酶基因的克隆、表达及酶学性质分析[J]. 生物技术通报, 2015, 31(7): 193-200. |
[10] | 张谦, 王剑英, 林智, 贾佳, 郭宏涛. 华根霉脂肪酶在黑曲霉中的重组表达研究[J]. 生物技术通报, 2015, 31(3): 165-170. |
[11] | 张晓立, 郑小梅, 满云, 罗虎, 于建东, 郑平, 刘浩, 孙际宾. 黑曲霉柠檬酸工业菌株原生质体制备与转化[J]. 生物技术通报, 2015, 31(3): 171-177. |
[12] | 张谦,贾佳,林智,杨晓锋,郭宏涛,王剑英,Carol Sze Ki Lin. 产脂肪酶黑曲霉摇瓶发酵条件优化研究[J]. 生物技术通报, 2015, 31(12): 227-233. |
[13] | 张欢, 曹焱鑫, 蒋林, 王晓明, 刘齐, 董晓莹, 寇巍. 黑曲霉(AS0006)产纤维素酶的纯化研究[J]. 生物技术通报, 2014, 0(6): 187-191. |
[14] | 刘瑜,李丕武. 黑曲霉葡萄糖氧化酶高产基因工程菌研究进展[J]. 生物技术通报, 2013, 0(7): 12-19. |
[15] | 张文丽,于寒松,朴春红,胡鑫,王舒婷,胡耀辉. 一株高产糖化酶生产菌的筛选与鉴定[J]. 生物技术通报, 2013, 0(7): 131-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||