生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 185-193.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0003
韩志阳1,2,3(), 贾子苗2, 梁秋菊4, 王轲2, 唐华丽2(), 叶兴国2, 张双喜3()
收稿日期:
2023-01-05
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
唐华丽,研究方向:小麦分子育种;E-mail: tanghuali@caas.cn;作者简介:
韩志阳,研究方向:小麦分子育种;E-mail: hzy1787324918@163.com基金资助:
HAN Zhi-yang1,2,3(), JIA Zi-miao2, LIANG Qiu-ju4, WANG Ke2, TANG Hua-li2(), YE Xing-guo2, ZHANG Shuang-xi3()
Received:
2023-01-05
Published:
2023-08-26
Online:
2023-09-05
摘要:
簇毛麦(Dasypyrum villosum)作为小麦的近缘种,具有许多优良基因,是改善小麦耐盐性和提高小麦营养品质的理想材料。以小麦-簇毛麦#2和小麦-簇毛麦#3二体附加系为材料,进行耐盐性鉴定及籽粒中硒和叶酸含量的测定。发现小麦-簇毛麦#2附加系和#3附加系在盐胁迫下的萌发率分别为16.67%-43.33%、26.67%-70.00%,均高于对照中国春(6.65%);盐胁迫下附加系DA3V#3、DA7V#3、DA2V#3和DA5V#2的萌发率分别为70.00%、56.67%、53.33%和43.33%;盐胁迫下附加系的生长正常,株高和根长均大于对照中国春,其中DA4V#2和DA2V#3的株高分别达到15.2和16.1 cm,DA2V#3根长为3.4 cm;在14个附加系和对照中,DA2V#2和DA2V#3籽粒硒含量最高,分别为8.47和7.60 μg/g。小麦-簇毛麦#2附加系和#3附加系籽粒中叶酸含量为9.00-26.10 μg/100 g,大多数附加系高于对照中国春(10.98 μg/100 g),其中,附加系DA4V#2和DA6V#2与对照差异达极显著水平,DA6V#2比对照增加2.4倍。簇毛麦2V#3、3V#3和5V#2染色体可能存在耐盐相关基因,2V染色体可能存在富硒相关基因,6V#2染色体可能携带籽粒叶酸合成的相关基因。
韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193.
HAN Zhi-yang, JIA Zi-miao, LIANG Qiu-ju, WANG Ke, TANG Hua-li, YE Xing-guo, ZHANG Shuang-xi. Salt Tolerance at Seedling Stage and Analysis of Selenium and Folic Acid Content in Seeds in Two Sets of Wheat-Dasypyrum villosum Chromosom Additional Lines[J]. Biotechnology Bulletin, 2023, 39(8): 185-193.
材料 Materials | 接种胚数Total tested mature embryos | 发芽株数 Germinated plants | 萌发率 Germination rate/% | 材料 Materials | 接种胚数Total tested mature embryos | 发芽株数 Germinated plants | 萌发率 Germination rate/% | |
---|---|---|---|---|---|---|---|---|
中国春 DA1V#2 DA2V#2 DA3V#2 DA4V#2 DA5V#2 DA6V#2 DA7V#2 | 30 30 30 30 30 30 30 30 | 2 5 8 9 6 13 10 9 | 6.66 16.67 26.67 30.00 20.00 43.33 33.33 30.00 | DA1V#3 DA2V#3 DA3V#3 DA4V#3 DA5V#3 DA6V#3 DA7V#3 | 30 30 30 30 30 30 30 | 13 16 21 10 8 14 17 | 43.33 53.33 70.00 33.33 26.67 46.67 56.67 |
表1 小麦-簇毛麦附加系成熟胚在盐胁迫下的萌发情况
Table 1 Germination situation of mature embryos of wheat- Dasypyrum villosum additional lines under salt stress conditions
材料 Materials | 接种胚数Total tested mature embryos | 发芽株数 Germinated plants | 萌发率 Germination rate/% | 材料 Materials | 接种胚数Total tested mature embryos | 发芽株数 Germinated plants | 萌发率 Germination rate/% | |
---|---|---|---|---|---|---|---|---|
中国春 DA1V#2 DA2V#2 DA3V#2 DA4V#2 DA5V#2 DA6V#2 DA7V#2 | 30 30 30 30 30 30 30 30 | 2 5 8 9 6 13 10 9 | 6.66 16.67 26.67 30.00 20.00 43.33 33.33 30.00 | DA1V#3 DA2V#3 DA3V#3 DA4V#3 DA5V#3 DA6V#3 DA7V#3 | 30 30 30 30 30 30 30 | 13 16 21 10 8 14 17 | 43.33 53.33 70.00 33.33 26.67 46.67 56.67 |
材料 Materials | 存活株数 Survival plants | 平均株高 Average plant height/cm | 平均根长 Average root length/cm | 材料 Materials | 存活株数 Survival plants | 平均株高 Average plant height/cm | 平均根长 Average root length/cm | |
---|---|---|---|---|---|---|---|---|
中国春 DA1V#2 DA2V#2 DA3V#2 DA4V#2 DA5V#2 DA6V#2 DA7V#2 | 2 5 8 9 6 13 10 9 | 9.4±0.26 d 10.9±0.26 c 12.0±0.36 bc 12.8±0.36 b 15.2±0.79 a 15.0±0.20 d 8.1±0.26 a 14.6±1.12 a | 2.8±0.20 ab 2.4±0.17 b 2.7±0.26 ab 2.9±0.10 a 3.0±0.20 a 2.9±0.30 a 2.7±0.10 ab 3.0±0.17 a | DA1V#3 DA2V#3 DA3V#3 DA4V#3 DA5V#3 DA6V#3 DA7V#3 | 13 16 21 10 8 14 17 | 14.0±0.20 bc 16.1±0.17 a 14.4±0.62 bc 14.1±0.62 bc 9.9±0.10 cd 13.7±0.26 bc 13.4±0.17 c | 3.2±0.17 a 3.4±0.10 a 2.8±0.26 bc 2.2±0.26 d 2.7±0.10 c 3.1±0.17 ab 2.8±0.10 bc |
表2 小麦-簇毛麦附加系在盐胁迫下的生长情况
Table 2 Growth status of mature embryos of wheat- Dasypyrum villosum additional lines under salt stress conditions
材料 Materials | 存活株数 Survival plants | 平均株高 Average plant height/cm | 平均根长 Average root length/cm | 材料 Materials | 存活株数 Survival plants | 平均株高 Average plant height/cm | 平均根长 Average root length/cm | |
---|---|---|---|---|---|---|---|---|
中国春 DA1V#2 DA2V#2 DA3V#2 DA4V#2 DA5V#2 DA6V#2 DA7V#2 | 2 5 8 9 6 13 10 9 | 9.4±0.26 d 10.9±0.26 c 12.0±0.36 bc 12.8±0.36 b 15.2±0.79 a 15.0±0.20 d 8.1±0.26 a 14.6±1.12 a | 2.8±0.20 ab 2.4±0.17 b 2.7±0.26 ab 2.9±0.10 a 3.0±0.20 a 2.9±0.30 a 2.7±0.10 ab 3.0±0.17 a | DA1V#3 DA2V#3 DA3V#3 DA4V#3 DA5V#3 DA6V#3 DA7V#3 | 13 16 21 10 8 14 17 | 14.0±0.20 bc 16.1±0.17 a 14.4±0.62 bc 14.1±0.62 bc 9.9±0.10 cd 13.7±0.26 bc 13.4±0.17 c | 3.2±0.17 a 3.4±0.10 a 2.8±0.26 bc 2.2±0.26 d 2.7±0.10 c 3.1±0.17 ab 2.8±0.10 bc |
图1 小麦-簇毛麦附加系在盐胁迫下的生长状况 a:小麦-簇毛麦附加系1V-7V#2(1:CS;2-8:DA1V#2-DA7V#2);b:小麦-簇毛麦附加系1V-7V#3(1:CS;2-8:DA1V#3-DA7V#3)。下同
Fig. 1 Growing status of wheat-Dasypyrum villosum additional lines under salt stress conditions a: Wheat-Dasypyrum villosun addition lines 1V-7V#2(1: CS; 2-8: DA1V#2-DA7V#2). b: Wheat-Dasypyrum villosun addition lines 1V-7V#3(1: CS; 2-8: DA1V#3-DA7V#3). The same below
图2 小麦-簇毛麦附加系籽粒中硒含量的测定 a:小麦-簇毛麦附加系1V-7V#2;b:小麦-簇毛麦附加系1V-7V#3。*表示在0.05水平上差异显著,**表示在0.01水平上差异显著。下同
Fig. 2 Selenium content analysis in the grains of wheat-Dasypyrum villosun addition lines a: Wheat-Dasypyrum villosun addition lines 1V-7V#2. b: Wheat-Dasypyrum villosun addition lines 1V-7V#3. * indicates significant differences at 0.05 level, and ** indicates significant differences at 0.01 level. The same below
图3 小麦-簇毛麦附加系籽粒中叶酸含量测定结果 a:小麦-簇毛麦附加系1V-7V#2;b:小麦-簇毛麦附加系1V-7V#3
Fig. 3 Folic acid content results in the grains of wheat-Dasypyrum villosun addition lines a: Wheat-Dasypyrum villosun addition lines 1V-7V#2. b: Wheat-Dasypyrum villosun addition lines 1V-7V#3
[1] |
魏益民, 张波, 关二旗, 等. 中国冬小麦品质改良研究进展[J]. 中国农业科学, 2013, 46(20): 4189-4196.
doi: 10.3864/j.issn.0578-1752.2013.20.002 |
Wei YM, Zhang B, Guan EQ, et al. Advances in study of quality property improvement of winter wheat in China[J]. Sci Agric Sin, 2013, 46(20): 4189-4196. | |
[2] | 檀竹平, 高雪萍. 1997-2016年中国小麦种植区域比较优势及空间分布[J]. 河南农业大学学报, 2018, 52(5): 825-838. |
Tan ZP, Gao XP. Comparative advantage and spatial distribution of wheat in China from 1997 to 2016[J]. J Henan Agric Univ, 2018, 52(5): 825-838. | |
[3] |
Ma MM, Li YC, Xue C, et al. Current situation and key parameters for improving wheat quality in China[J]. Front Plant Sci, 2021, 12: 638525.
doi: 10.3389/fpls.2021.638525 URL |
[4] |
Miranda da Silveira M, Lambrecht Dittgen C, de Souza Batista C, et al. Discrimination of the quality of Brazilian wheat genotypes and their use as whole-grains in human nutrition[J]. Food Chem, 2020, 312: 126074.
doi: 10.1016/j.foodchem.2019.126074 URL |
[5] | Rhoades J, Loveday J. Salinity in irrigated agriculture[J]. Agronomy, 1990(30): 1089-1142. |
[6] |
Li HJ, Zhou Y, Xin WL, et al. Wheat breeding in Northern China: achievements and technical advances[J]. Crop J, 2019, 7(6): 718-729.
doi: 10.1016/j.cj.2019.09.003 |
[7] |
Hao M, Zhang LQ, Ning SZ, et al. The resurgence of introgression breeding, as exemplified in wheat improvement[J]. Front Plant Sci, 2020, 11: 252.
doi: 10.3389/fpls.2020.00252 pmid: 32211007 |
[8] |
Tyrka M, Tyrka D, Wędzony M. Genetic map of Triticale integrating microsatellite, DArT and SNP markers[J]. PLoS One, 2015, 10(12): e0145714.
doi: 10.1371/journal.pone.0145714 URL |
[9] |
Zhang XL, Shen XR, Hao YF, et al. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust[J]. Theor Appl Genet, 2011, 122(2): 263-270.
doi: 10.1007/s00122-010-1441-3 URL |
[10] |
Cao AZ, Xing LP, Wang XY, et al. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat[J]. PNAS, 2011, 108(19): 7727-7732.
doi: 10.1073/pnas.1016981108 URL |
[11] | 何中虎, 兰彩霞, 陈新民, 等. 小麦条锈病和白粉病成株抗性研究进展与展望[J]. 中国农业科学, 2011, 44(11): 2193-2215. |
He ZH, Lan CX, Chen XM, et al. Progress and perspective in research of adult-plant resistance to stripe rust and powdery mildew in wheat[J]. Sci Agric Sin, 2011, 44(11): 2193-2215. | |
[12] |
Guo J, Zhang XL, Hou YL, et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection[J]. Theor Appl Genet, 2015, 128(11): 2301-2316.
doi: 10.1007/s00122-015-2586-x URL |
[13] |
Kumar VS, Satish K, Imran S, et al. Transfer of useful variability of high grain iron and zinc from Aegilops kotschyi into wheat through seed irradiation approach[J]. Int J Radiat Biol, 2016, 92(3): 132-139.
doi: 10.3109/09553002.2016.1135263 URL |
[14] |
Zhong GY, Dvorak J. Chromosomal control of the tolerance of gradually and suddenly imposed salt stress in the Lophopyrum elongatum and wheat, Triticum aestivum L. genomes[J]. Theoret Appl Genetics, 1995, 90(2): 229-236.
doi: 10.1007/BF00222206 URL |
[15] | 单雷, 赵双宜, 陈芳, 等. 小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位[J]. 中国农业科学, 2006, 39(2)225-230 |
Shan L, Zhao SY, Chen F, et al. Screening and localization of SSR markers related to salt tolerance of somatic hybrid wheat Shanrong No.3[J]. Sci Agric Sin, 2006, 39(2)225-230 | |
[16] | 刘旭, 史娟, 张学勇, 等. 小麦耐盐种质的筛选鉴定和耐盐基因的标记[J]. 2001(9): 948-954. |
Liu X, Shi J, Zhang XY, et al. Screening salt tolerance germplasms and tagging the tolerance gene(s)using microsatellite(SSR)markers in wheat[J]. Chinese Bull Botany, 2001(9): 948-954. | |
[17] |
魏景芳, 秦君, 王淳, 等. 小麦与多枝赖草耐盐纯合易位系的培育及GISH鉴定[J]. 华北农学报, 2004, 19(1): 40-43.
doi: 10.3321/j.issn:1000-7091.2004.01.012 |
Wei JF, Qin J, Wang C, et al. Development and GISH identification of salt-tolerant translocation lines between wheat and Leymus multicaulis[J]. Acta Agric Boreali Sin, 2004, 19(1): 40-43. | |
[18] | Ao TGBY, Lang ML, Li YQ, et al. Cloning and expression analysis of cysteine protease gene(MwCP)in Agropyron mongolicum Keng[J]. Genet Mol Res, 2016, 15(1): GMRvol.15. |
[19] |
Khalil HB, Brunetti SC, Pham UM, et al. Characterization of the caleosin gene family in the Triticeae[J]. BMC Genomics, 2014, 15(1): 239.
doi: 10.1186/1471-2164-15-239 |
[20] | 安调过, 许红星, 许云峰. 小麦远缘杂交种质资源创新[J]. 中国生态农业学报, 2011, 19(5): 1011-1019. |
An DG, Xu HX, Xu YF. Enhancement of wheat distant hybridization germplasm[J]. Chin J Eco Agric, 2011, 19(5): 1011-1019.
doi: 10.3724/SP.J.1011.2011.01011 URL |
|
[21] |
Hanson AD, Gregory JF. Folate biosynthesis, turnover, and transport in plants[J]. Annu Rev Plant Biol, 2011, 62: 105-125.
doi: 10.1146/annurev-arplant-042110-103819 pmid: 21275646 |
[22] |
Fox TE, Atherton C, Dainty JR, et al. Absorption of selenium from wheat, garlic, and cod intrinsically labeled with Se-77 and Se-82 stable isotopes[J]. Int J Vitam Nutr Res, 2005, 75(3): 179-186.
doi: 10.1024/0300-9831.75.3.179 pmid: 16028633 |
[23] |
Hawkesford MJ, Zhao FJ. Strategies for increasing the selenium content of wheat[J]. J Cereal Sci, 2007, 46(3): 282-292.
doi: 10.1016/j.jcs.2007.02.006 URL |
[24] | 唐玉霞, 王慧敏, 杨军方, 等. 河北省冬小麦硒的含量及其富硒技术研究[J]. 麦类作物学报, 2011, 31(2): 347-351. |
Tang YX, Wang HM, Yang JF, et al. Studies on the selenium content and selenium enriched technique of winter wheat in Hebei Province[J]. J Triticeae Crops, 2011, 31(2): 347-351. | |
[25] | 鲁璐, 季英苗, 李莉蓉, 等. 不同地区、不同品种(系)小麦锌、铁和硒含量分析[J]. 应用与环境生物学报, 2010, 16(5): 646-649. |
Lu L, Ji YM, Li LR, et al. Analysis of Fe, Zn and Se contents in different wheat cultivars(lines)planted in different areas[J]. Chin J Appl Environ Biol, 2010, 16(5): 646-649. | |
[26] |
Riaz B, Liang QJ, Wan X, et al. Folate content analysis of wheat cultivars developed in the North China Plain[J]. Food Chem, 2019, 289: 377-383.
doi: S0308-8146(19)30505-9 pmid: 30955626 |
[27] |
Grądzielewska A. The genus Dasypyrum-part 2. Dasypyrum villosum-a wild species used in wheat improvement[J]. Euphytica, 2006, 152(3): 441-454.
doi: 10.1007/s10681-006-9245-x URL |
[28] | 赵万春, 董剑, 陈其皎, 等. 簇毛麦——用于小麦改良的一种野生植物[J]. 草业科学, 2012, 29(10): 1613-1621. |
Zhao WC, Dong J, Chen QJ, et al. Advance in Dasypyrum villosum-a valuable wild species used in wheat improvement[J]. Pratacultural Sci, 2012, 29(10): 1613-1621. | |
[29] |
陈全战, 张边江, 周峰, 等. 簇毛麦染色体对小麦生理指标的影响[J]. 华北农学报, 2010, 25(5): 137-140.
doi: 10.7668/hbnxb.2010.05.028 |
Chen QZ, Zhang BJ, Zhou F, et al. Effect of Haynaldia villosa chromosome on physiological index of wheat[J]. Acta Agric Boreali Sin, 2010, 25(5): 137-140. | |
[30] |
Xing LP, Di ZC, Yang WW, et al. Overexpression of ERF1-V from Haynaldia villosa can enhance the resistance of wheat to powdery mildew and increase the tolerance to salt and drought stresses[J]. Front Plant Sci, 2017, 8: 1948.
doi: 10.3389/fpls.2017.01948 URL |
[31] |
Zhang RQ, Sun BX, Chen J, et al. Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat[J]. Theor Appl Genet, 2016, 129(10): 1975-1984.
doi: 10.1007/s00122-016-2753-8 URL |
[32] |
Qi LL, Pumphrey MO, Friebe B, et al. A novel robertsonian translocation event leads to transfer of a stem rust resistance gene(Sr52)effective against race Ug99 from Dasypyrum[J]. Theor Appl Genet, 2011, 123(1): 159-167.
doi: 10.1007/s00122-011-1574-z pmid: 21437597 |
[33] |
Ye XG, Zhang SX, Li SJ, et al. Improvement of three commercial spring wheat varieties for powdery mildew resistance by marker-assisted selection[J]. Crop Prot, 2019, 125: 104889.
doi: 10.1016/j.cropro.2019.104889 URL |
[34] |
Liang XN, Bie XM, Qiu YL, et al. Development of powdery mildew resistant derivatives of wheat variety Fielder for use in genetic transformation[J]. Crop J, 2023, 11(2): 573-583.
doi: 10.1016/j.cj.2022.06.012 |
[35] | 罗廷彬, 李彦, 任崴, 等. 新疆盐碱地种植耐盐小麦土壤盐分的变化[J]. 干旱区资源与环境, 2004, 18(S2): 107-113. |
Luo TB, Li Y, Ren W, et al. Studies on soil salinity change by planting salt-tolerant wheat in saline ground in Xinjiang[J]. J Arid Land Resour Environ, 2004, 18(S2): 107-113. | |
[36] | 赵旭, 王林权, 周春菊, 等. 盐胁迫对不同基因型冬小麦发芽和出苗的影响[J]. 干旱地区农业研究, 2005, 23(4): 108-112. |
Zhao X, Wang LQ, Zhou CJ, et al. Effects of salt stress on germination and emergence of different winter wheat genotypes[J]. Agric Res Arid Areas, 2005, 23(4): 108-112. | |
[37] | 彭智, 李龙, 柳玉平, 等. 小麦芽期和苗期耐盐性综合评价[J]. 植物遗传资源学报, 2017, 18(4): 638-645. |
Peng Z, Li L, Liu YP, et al. Evaluation of salinity tolerance in wheat(Triticum aestium)genotypes at germination and seedling stages[J]. J Plant Genet Resour, 2017, 18(4): 638-645. | |
[38] | 王萌萌, 姜奇彦, 胡正, 等. 小麦品种资源耐盐性鉴定[J]. 植物遗传资源学报, 2012, 13(2): 189-194. |
Wang MM, Jiang QY, Hu Z, et al. Evaluation for salt tolerance of wheat cultivars[J]. J Plant Genet Resour, 2012, 13(2): 189-194.
doi: 10.13430/j.cnki.jpgr.2012.02.005 |
|
[39] |
刘慧, 杨月娥, 王朝辉, 等. 中国不同麦区小麦籽粒硒的含量及调控[J]. 中国农业科学, 2016, 49(9): 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008 |
Liu H, Yang YE, Wang ZH, et al. Selenium content of wheat grain and its regulation in different wheat production regions of China[J]. Sci Agric Sin, 2016, 49(9): 1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008 |
|
[40] |
Lyons G, Ortiz-Monasterio I, Stangoulis J, et al. Selenium concentration in wheat grain: is there sufficient genotypic variation to use in breeding?[J]. Plant Soil, 2005, 269(1): 369-380.
doi: 10.1007/s11104-004-0909-9 URL |
[41] |
Poblaciones MJ, Santamaría O, García-White T, et al. Selenium biofortification in bread-making wheat under Mediterranean conditions: influence on grain yield and quality parameters[J]. Crop Pasture Sci, 2014, 65(4): 362-369.
doi: 10.1071/CP14061 URL |
[42] |
Liang QJ, Wang K, Shariful I, et al. Folate content and retention in wheat grains and wheat-based foods: effects of storage, processing, and cooking methods[J]. Food Chem, 2020, 333: 127459.
doi: 10.1016/j.foodchem.2020.127459 URL |
[43] |
Liang QJ, Wang K, Liu XN, et al. Improved folate accumulation in genetically modified maize and wheat[J]. J Exp Bot, 2019, 70(5): 1539-1551.
doi: 10.1093/jxb/ery453 pmid: 30753561 |
[44] |
Li SJ, Wang J, Wang KY, et al. Development of PCR markers specific to Dasypyrum villosum genome based on transcriptome data and their application in breeding Triticum aestivum-D. villosum#4 alien chromosome lines[J]. BMC Genom, 2019, 20(1): 289.
doi: 10.1186/s12864-019-5630-4 |
[45] |
Li SJ, Jia ZM, Wang K, et al. Screening and functional characterization of candidate resistance genes to powdery mildew from Dasypyrum villosum#4 in a wheat line Pm97033[J]. Theor Appl Genet, 2020, 133(11): 3067-3083.
doi: 10.1007/s00122-020-03655-4 |
[1] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[2] | 陈奕博, 杨万明, 岳爱琴, 王利祥, 杜维俊, 王敏. 基于SLAF标记的大豆遗传图谱构建及苗期耐盐性QTL定位[J]. 生物技术通报, 2023, 39(2): 70-79. |
[3] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[4] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[5] | 石广成, 杨万明, 杜维俊, 王敏. 大豆耐盐种质的筛选及其耐盐生理特性分析[J]. 生物技术通报, 2022, 38(4): 174-183. |
[6] | 张晓佳, 卢亚军, 张文晋, 张瑜, 崔高畅, 郎多勇, 张新慧. 抗旱耐盐菌剂的制备及其对甘草种子萌发的影响[J]. 生物技术通报, 2020, 36(9): 180-193. |
[7] | 鲁琳, 赵希胜, 刘维东, 王艳婷, 吴玲莉, 鲁黎明. 花烟草NáNHX1基因的克隆及其在非生物胁迫下的表达模式[J]. 生物技术通报, 2020, 36(4): 70-77. |
[8] | 石晶静, 郭依萍, 于颖, 周美琪, 王超. 转BpLTP4烟草耐盐性分析[J]. 生物技术通报, 2020, 36(12): 34-41. |
[9] | 张昭杨, 庞军玲, 韩梅, 冷鹏飞, 赵军. 转基因ABP9玉米株系的耐盐性分析[J]. 生物技术通报, 2019, 35(5): 48-57. |
[10] | 刘晓威, 杨秀艳, 武海雯, 支晓蓉, 朱建峰, 张华新. NaCl胁迫对红砂萌发的影响及萌发期耐盐性评价[J]. 生物技术通报, 2019, 35(1): 27-34. |
[11] | 马金彪, 张大勇, 张梅茹, 肖薪龙, 张选, 李丽. 盐角草高亲和钾离子转运蛋白SeHKT1基因的克隆及表达分析[J]. 生物技术通报, 2015, 31(11): 159-165. |
[12] | 姚曼红;刘琳;曾幼玲;. 五大类传统植物激素对植物响应盐胁迫的调控[J]. , 2011, 0(11): 1-5. |
[13] | 周玲玲;祝建波;王爱英;. 过量表达大叶补血草LgNHX1基因对拟南芥耐盐性的影响[J]. , 2011, 0(09): 90-95. |
[14] | 于军;张朴进;郭玲;李汉霞;张余洋;. NaCl胁迫下不同番茄品种萌芽期耐盐性评价[J]. , 2009, 0(S1): 159-164. |
[15] | 王悦琳;李德全;. 耐盐基因及转基因烟草研究进展[J]. , 2009, 0(10): 8-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||