生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 80-90.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0273
收稿日期:
2023-03-23
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
梁卫红,女,博士,教授,研究方向:分子细胞生物学;E-mail: liangwh@htu.cn作者简介:
姚莎莎,女,硕士研究生,研究方向:分子细胞生物学;E-mail: 2104183054@stu.htu.edu.cn
基金资助:
YAO Sha-sha(), WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong()
Received:
2023-03-23
Published:
2023-08-26
Online:
2023-09-05
摘要:
水稻是人类主要的粮食作物,如何有效提高其产量和品质是备受关注的重大科学问题。水稻籽粒大小是影响产量的主要因素之一,水稻籽粒发育调控的研究对利用分子设计育种提高产量、改善品质具有重要的指导意义。粒型由籽粒的长度、宽度和厚度共同决定,是受多基因调控的数量性状,是决定水稻产量和品质的关键因素之一。近年来,通过对水稻种子发育缺陷突变体的研究,发现了大量与粒型相关的数量性状位点(quantitative trait locus, QTL),一些相关基因也相继被克隆和鉴定,调控水稻粒型的复杂信号通路正在逐步阐明,其中一些基因涉及植物激素的合成、分解、运输,以及植物激素的信号转导途径。本文概述了水稻胚乳发育的基本过程,归纳了目前对胚乳发育过程中植物激素动态变化的整体认识,聚焦于控制水稻粒型的植物激素信号通路相关QTL和基因的研究现状,并对近年来取得较大进展的细胞分裂素、油菜素内酯、生长素、赤霉素、乙烯、茉莉酸和脱落酸相关通路与粒型调控的关系进行了总结和分析,进一步梳理了水稻粒型相关植物激素信号调控网络,旨在为鉴定和解析植物激素调控水稻粒型的分子机制提供参考,同时为水稻分子设计育种提供新的思路。
姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90.
YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways[J]. Biotechnology Bulletin, 2023, 39(8): 80-90.
植物激素 Plant hormone | 基因 Gene | 基因登录号 Accession No. | 蛋白类型 Protein category | 正/负调控 Positive(+)/ negative(-)regulator | 参考文献 References |
---|---|---|---|---|---|
细胞分裂素 Cytokinin | OsSGL | LOC_Os02g04130 | DUF1645蛋白 | 粒长(+)粒宽(-) | [ |
DST | Os03g0786400 | 锌指转录因子 | 粒重(-) | [ | |
BG3/OsPUP4 | Os01g0680200 | 嘌呤渗透酶 | 粒长(-)粒宽(-)粒重(-) | [ | |
油菜素内酯Brassinolide | GS5 | Os05g0158500 | 丝氨酸羧肽酶 | 粒宽(+)粒重(+) | [ |
BRI1 | Os01g0718300 | 受体激酶 | 粒宽(-) | [ | |
BAK1 | Os03g0440900 | BRI1相关激酶 | 粒长(+)粒宽(+) 粒重(+) | [ | |
BZR1 | Os07g0580500 | BZR转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
GW5 | Os05g0187500 | 钙调素结合蛋白 | 粒宽(-) | [ | |
OFP19 | Os05g0324600 | OVATE家族蛋白 | 粒长(-)粒宽(+) | [ | |
GS2/OsGRF4 | Os02g0701300 | 转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsWRKY53 | Os05g0343400 | WRKY 转录因子 | 粒长(+)粒宽(+) | [ | |
GS9 | Os09g0448500 | 转录激活因子 | 粒长(-)粒宽(+) | [ | |
DLT | Os06g0127600 | GRAS家族蛋白 | 粒长(+)粒宽(-)粒重(-) | [ | |
D11 | Os04g0469800 | 细胞色素P450蛋白 | 粒长(+)粒宽(+) | [ | |
D2 | LOC_Os01g10040 | 细胞色素P450蛋白 | 粒长(+)粒宽(+) | [ | |
BRD1 | OS03g0602300 | 生物合成酶 | 粒长(+)粒宽(+) | [ | |
BRD2 | OS10g0397400 | 生物合成酶 | 粒长(+)粒宽(+) | [ | |
生长素Auxin | OsARF4 | Os01g0927600 | 生长素应答因子 | 粒长(-)粒宽(-)粒重(-) | [ |
OsARF6 | Os02g0164900 | 生长素应答因子 | 粒长(-)粒重(-) | [ | |
OsAUX3 | Os05g0447200 | 生长素转运载体 | 粒长(-)粒重(-) | [ | |
Gnp4/LAX2 | Os04g0396500 | RAWUL蛋白 | 粒长(+)粒重(+) | [ | |
OsIAA3 | Os12g0601400 | Aux/IAA 蛋白 | 粒长(-) | [ | |
OsARF25 | Os12g0613700 | 转录因子 | 粒长(+)粒宽(+) | [ | |
GSA1 | Os03g0757500 | UDP葡萄糖基转移酶 | 粒长(+)粒宽(+)粒重(+) | [ | |
TSG1 | LOC_Os01g07500 | 色氨酸氨基转移酶 | 粒长(+)粒宽(+)粒重(+) | [ | |
DNR1 | LOC_Os01g08270 | 生长素应答因子 | 粒重(+) | [ | |
赤霉素Gibberellin | GW6 | Os06g0266800 | GAST 家族蛋白 | 粒长(+)粒宽(+)粒重(+) | [ |
OsGASR9 | Os07g0592000 | GAST 家族蛋白 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsWRKY36 | Os04g0545000 | WRKY转录因子 | 粒长(-)粒宽(-)粒重(-) | [ | |
SGD2 | Os01g0643600 | HD-Zip转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsBC1 | Os09g0510500 | bHLH转录因子 | 粒长(+)粒宽(-)粒重(+) | [ | |
SNG1 | Os01g0940100 | 己糖激酶样蛋白 | 粒长(+)粒宽(+)粒重(+) | [ | |
乙烯Ethylene | OsERF115 | Os08g0521600 | ERF转录因子 | 粒宽(+) | [ |
茉莉酸Jasmonic acid | OsJAZ11 | Os03g0180900 | JAZ蛋白 | 粒长(+)粒宽(+)粒重(+) | [ |
脱落酸Abscisic acid | OsNCED3 | Os03g0645900 | 9-顺式-环氧类胡萝卜素双加氧酶 | 粒长(+)粒宽(+)粒重(+) | [ |
其他调控因子Other regulators | RGB1 | Os03g0669200 | Gβ 亚基 | 粒长(+) | [ |
qPE9-1/DEP1 | Os09g0441900 | Gγ亚基 | 粒长(+) | [ | |
qGL3/OsPPKL1 | Os03g0646900 | 丝氨酸/苏氨酸磷酸酶 | 粒长(-) | [ | |
OsYUC11 | Os12g0189500 | 黄素单加氧酶 | 粒重(+) | [ |
表1 已鉴定的调控水稻粒型的植物激素信号基因
Table 1 Identified phytohormone signalling genes regulating grain size in rice
植物激素 Plant hormone | 基因 Gene | 基因登录号 Accession No. | 蛋白类型 Protein category | 正/负调控 Positive(+)/ negative(-)regulator | 参考文献 References |
---|---|---|---|---|---|
细胞分裂素 Cytokinin | OsSGL | LOC_Os02g04130 | DUF1645蛋白 | 粒长(+)粒宽(-) | [ |
DST | Os03g0786400 | 锌指转录因子 | 粒重(-) | [ | |
BG3/OsPUP4 | Os01g0680200 | 嘌呤渗透酶 | 粒长(-)粒宽(-)粒重(-) | [ | |
油菜素内酯Brassinolide | GS5 | Os05g0158500 | 丝氨酸羧肽酶 | 粒宽(+)粒重(+) | [ |
BRI1 | Os01g0718300 | 受体激酶 | 粒宽(-) | [ | |
BAK1 | Os03g0440900 | BRI1相关激酶 | 粒长(+)粒宽(+) 粒重(+) | [ | |
BZR1 | Os07g0580500 | BZR转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
GW5 | Os05g0187500 | 钙调素结合蛋白 | 粒宽(-) | [ | |
OFP19 | Os05g0324600 | OVATE家族蛋白 | 粒长(-)粒宽(+) | [ | |
GS2/OsGRF4 | Os02g0701300 | 转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsWRKY53 | Os05g0343400 | WRKY 转录因子 | 粒长(+)粒宽(+) | [ | |
GS9 | Os09g0448500 | 转录激活因子 | 粒长(-)粒宽(+) | [ | |
DLT | Os06g0127600 | GRAS家族蛋白 | 粒长(+)粒宽(-)粒重(-) | [ | |
D11 | Os04g0469800 | 细胞色素P450蛋白 | 粒长(+)粒宽(+) | [ | |
D2 | LOC_Os01g10040 | 细胞色素P450蛋白 | 粒长(+)粒宽(+) | [ | |
BRD1 | OS03g0602300 | 生物合成酶 | 粒长(+)粒宽(+) | [ | |
BRD2 | OS10g0397400 | 生物合成酶 | 粒长(+)粒宽(+) | [ | |
生长素Auxin | OsARF4 | Os01g0927600 | 生长素应答因子 | 粒长(-)粒宽(-)粒重(-) | [ |
OsARF6 | Os02g0164900 | 生长素应答因子 | 粒长(-)粒重(-) | [ | |
OsAUX3 | Os05g0447200 | 生长素转运载体 | 粒长(-)粒重(-) | [ | |
Gnp4/LAX2 | Os04g0396500 | RAWUL蛋白 | 粒长(+)粒重(+) | [ | |
OsIAA3 | Os12g0601400 | Aux/IAA 蛋白 | 粒长(-) | [ | |
OsARF25 | Os12g0613700 | 转录因子 | 粒长(+)粒宽(+) | [ | |
GSA1 | Os03g0757500 | UDP葡萄糖基转移酶 | 粒长(+)粒宽(+)粒重(+) | [ | |
TSG1 | LOC_Os01g07500 | 色氨酸氨基转移酶 | 粒长(+)粒宽(+)粒重(+) | [ | |
DNR1 | LOC_Os01g08270 | 生长素应答因子 | 粒重(+) | [ | |
赤霉素Gibberellin | GW6 | Os06g0266800 | GAST 家族蛋白 | 粒长(+)粒宽(+)粒重(+) | [ |
OsGASR9 | Os07g0592000 | GAST 家族蛋白 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsWRKY36 | Os04g0545000 | WRKY转录因子 | 粒长(-)粒宽(-)粒重(-) | [ | |
SGD2 | Os01g0643600 | HD-Zip转录因子 | 粒长(+)粒宽(+)粒重(+) | [ | |
OsBC1 | Os09g0510500 | bHLH转录因子 | 粒长(+)粒宽(-)粒重(+) | [ | |
SNG1 | Os01g0940100 | 己糖激酶样蛋白 | 粒长(+)粒宽(+)粒重(+) | [ | |
乙烯Ethylene | OsERF115 | Os08g0521600 | ERF转录因子 | 粒宽(+) | [ |
茉莉酸Jasmonic acid | OsJAZ11 | Os03g0180900 | JAZ蛋白 | 粒长(+)粒宽(+)粒重(+) | [ |
脱落酸Abscisic acid | OsNCED3 | Os03g0645900 | 9-顺式-环氧类胡萝卜素双加氧酶 | 粒长(+)粒宽(+)粒重(+) | [ |
其他调控因子Other regulators | RGB1 | Os03g0669200 | Gβ 亚基 | 粒长(+) | [ |
qPE9-1/DEP1 | Os09g0441900 | Gγ亚基 | 粒长(+) | [ | |
qGL3/OsPPKL1 | Os03g0646900 | 丝氨酸/苏氨酸磷酸酶 | 粒长(-) | [ | |
OsYUC11 | Os12g0189500 | 黄素单加氧酶 | 粒重(+) | [ |
[1] |
Fan YW, Li YB. Molecular, cellular and Yin-Yang regulation of grain size and number in rice[J]. Mol Breeding, 2019, 39(12): 163.
doi: 10.1007/s11032-019-1078-0 |
[2] |
Xing YZ, Zhang QF. Genetic and molecular bases of rice yield[J]. Annu Rev Plant Biol, 2010, 61: 421-442.
doi: 10.1146/annurev-arplant-042809-112209 pmid: 20192739 |
[3] |
Li GM, Tang JY, Zheng JK, et al. Exploration of rice yield potential: Decoding agronomic and physiological traits[J]. Crop J, 2021, 9(3): 577-589.
doi: 10.1016/j.cj.2021.03.014 |
[4] |
Zhao DS, Zhang CQ, Li QF, et al. Genetic control of grain appearance quality in rice[J]. Biotechnol Adv, 2022, 60: 108014.
doi: 10.1016/j.biotechadv.2022.108014 URL |
[5] | 刘迪, 冯连杰, 梁卫红. 水稻粒型调控相关信号通路的鉴定与解析[J]. 中国生物化学与分子生物学报, 2023, 39(2): 212-221. |
Liu D, Feng LJ, Liang WH. Identification and analysis of grain shape related regulation signal pathways in rice[J]. Chin J Biochem Mol Biol, 2023, 39(2): 212-221. | |
[6] |
Azizi P, Osman M, Hanafi MM, et al. Molecular insights into the regulation of rice kernel elongation[J]. Crit Rev Biotechnol, 2019, 39(7): 904-923.
doi: 10.1080/07388551.2019.1632257 pmid: 31303070 |
[7] |
Ren DY, Ding CQ, Qian Q. Molecular bases of rice grain size and quality for optimized productivity[J]. Sci Bull, 2023, 68(3): 314-350.
doi: 10.1016/j.scib.2023.01.026 URL |
[8] |
Li N, Xu R, Duan PG, et al. Control of grain size in rice[J]. Plant Reprod, 2018, 31(3): 237-251.
doi: 10.1007/s00497-018-0333-6 pmid: 29523952 |
[9] |
Basunia MA, Nonhebel HM. Hormonal regulation of cereal endosperm development with a focus on rice(Oryza sativa)[J]. Funct Plant Biol, 2019, 46(6): 493-506.
doi: 10.1071/FP18323 pmid: 30955506 |
[10] |
Zhang XF, Tong JH, Bai AN, et al. Phytohormone dynamics in developing endosperm influence rice grain shape and quality[J]. J Integr Plant Biol, 2020, 62(10): 1625-1637.
doi: 10.1111/jipb.12927 |
[11] |
Li N, Xu R, Li YH. Molecular networks of seed size control in plants[J]. Annu Rev Plant Biol, 2019, 70: 435-463.
doi: 10.1146/annurev-arplant-050718-095851 pmid: 30795704 |
[12] |
Wu XB, Liu JX, Li DQ, et al. Rice caryopsis development I: Dynamic changes in different cell layers[J]. J Integr Plant Biol, 2016, 58(9): 772-785.
doi: 10.1111/jipb.12440 |
[13] |
Wu XB, Liu JX, Li DQ, et al. Rice caryopsis development II: Dynamic changes in the endosperm[J]. J Integr Plant Biol, 2016, 58(9): 786-798.
doi: 10.1111/jipb.12488 |
[14] |
Weier DA, Thiel J, Kohl S, et al. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains[J]. J Exp Bot, 2014, 65(18): 5291-5304.
doi: 10.1093/jxb/eru289 pmid: 25024168 |
[15] |
Yang JC, Zhang JH, Wang ZQ, et al. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene[J]. J Exp Bot, 2006, 57(1): 149-160.
pmid: 16330527 |
[16] |
Liu K, Li MJ, Zhang B, et al. Poaceae orthologs of rice OsSGL, DUF1645 domain-containing genes, positively regulate drought tolerance, grain length and weight in rice[J]. Rice Sci, 2022, 29(3): 257-267.
doi: 10.1016/j.rsci.2021.11.001 |
[17] |
Wang ML, Lu XD, Xu GY, et al. OsSGL, a novel pleiotropic stress-related gene enhances grain length and yield in rice[J]. Sci Rep, 2016, 6: 38157.
doi: 10.1038/srep38157 pmid: 27917884 |
[18] |
Jameson PE, Song JC. Cytokinin: A key driver of seed yield[J]. J Exp Bot, 2016, 67(3): 593-606.
doi: 10.1093/jxb/erv461 pmid: 26525061 |
[19] |
Li SY, Zhao BR, Yuan DY, et al. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proc Natl Acad Sci USA, 2013, 110(8): 3167-3172.
doi: 10.1073/pnas.1300359110 URL |
[20] |
Xiao YH, Liu DP, Zhang GX, et al. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice[J]. J Integr Plant Biol, 2019, 61(5): 581-597.
doi: 10.1111/jipb.v61.5 URL |
[21] |
Makarevitch I, Thompson A, Muehlbauer GJ, et al. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase[J]. Plos One, 2012, 7(1): e30798.
doi: 10.1371/journal.pone.0030798 URL |
[22] |
Huang JP, Chen ZM, Lin JJ, et al. Natural variation of the BRD2 allele affects plant height and grain size in rice[J]. Planta, 2022, 256(2): 27.
doi: 10.1007/s00425-022-03939-7 |
[23] |
Hong Z, Ueguchi-Tanaka M, Umemura K, et al. A rice brassinosteroid-deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450[J]. Plant Cell, 2003, 15(12): 2900-2910.
doi: 10.1105/tpc.014712 pmid: 14615594 |
[24] |
Tanabe S, Ashikari M, Fujioka S, et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. Plant Cell, 2005, 17(3): 776-790.
doi: 10.1105/tpc.104.024950 URL |
[25] |
Wu YZ, Fu YC, Zhao SS, et al. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice[J]. Plant Biotechnol J, 2016, 14(1): 377-386.
doi: 10.1111/pbi.12391 URL |
[26] | Zhou Y, Tao YJ, Zhu JY, et al. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety[J]. Rice(NY), 2017, 10(1): 34. |
[27] |
Li Y, Li XM, Fu DB, et al. Panicle Morphology Mutant 1(PMM1)determines the inflorescence architecture of rice by controlling brassinosteroid biosynthesis[J]. BMC Plant Biol, 2018, 18(1): 348.
doi: 10.1186/s12870-018-1577-x |
[28] |
Zhan HD, Lu MM, Luo Q, et al. OsCPD1 and OsCPD2 are functional brassinosteroid biosynthesis genes in rice[J]. Plant Sci, 2022, 325: 111482.
doi: 10.1016/j.plantsci.2022.111482 URL |
[29] |
Tong HN, Liu LC, Jin Y, et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice[J]. Plant Cell, 2012, 24(6): 2562-2577.
doi: 10.1105/tpc.112.097394 URL |
[30] |
Tian XJ, He ML, Mei EY, et al. WRKY53 integrates classic brassinosteroid signaling and the mitogen-activated protein kinase pathway to regulate rice architecture and seed size[J]. Plant Cell, 2021, 33(8): 2753-2775.
doi: 10.1093/plcell/koab137 URL |
[31] |
Xiao YH, Liu DP, Zhang GX, et al. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice[J]. Front Plant Sci, 2017, 8: 1698.
doi: 10.3389/fpls.2017.01698 pmid: 29021808 |
[32] |
Xiao Y, Zhang G, Liu D, et al. GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice[J]. Plant J, 2020, 102(6): 1187-1201.
doi: 10.1111/tpj.v102.6 URL |
[33] |
Yang C, Ma Y, He YM, et al. OsOFP19 modulates plant architecture by integrating the cell division pattern and brassinosteroid signaling[J]. Plant J, 2018, 93(3): 489-501.
doi: 10.1111/tpj.2018.93.issue-3 URL |
[34] |
Chen XL, Jiang LR, Zheng JS, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice[J]. J Exp Bot, 2019, 70(15): 3851-3866.
doi: 10.1093/jxb/erz192 URL |
[35] |
Zhao DS, Li QF, Zhang CQ, et al. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality[J]. Nat Commun, 2018, 9(1): 1240.
doi: 10.1038/s41467-018-03616-y |
[36] |
Huang YS, Dong H, Mou CL, et al. Ribonuclease H-like gene SMALL GRAIN2 regulates grain size in rice through brassinosteroid signaling pathway[J]. J Integr Plant Biol, 2022, 64(10): 1883-1900.
doi: 10.1111/jipb.v64.10 URL |
[37] |
Gong JY, Miao JS, Zhao Y, et al. Dissecting the genetic basis of grain shape and chalkiness traits in hybrid rice using multiple collaborative populations[J]. Mol Plant, 2017, 10(10): 1353-1356.
doi: S1674-2052(17)30231-9 pmid: 28803900 |
[38] |
Liu JF, Chen J, Zheng XM, et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice[J]. Nat Plants, 2017, 3: 17043.
doi: 10.1038/nplants.2017.43 URL |
[39] |
Li YB, Fan CC, Xing YZ, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011, 43(12): 1266-1269.
doi: 10.1038/ng.977 |
[40] |
Xu CJ, Liu Y, Li YB, et al. Differential expression of GS5 regulates grain size in rice[J]. J Exp Bot, 2015, 66(9): 2611-2623.
doi: 10.1093/jxb/erv058 URL |
[41] |
Weijers D, Wagner D. Transcriptional responses to the auxin hormone[J]. Annu Rev Plant Biol, 2016, 67: 539-574.
doi: 10.1146/annurev-arplant-043015-112122 pmid: 26905654 |
[42] |
Powers SK, Strader LC. Regulation of auxin transcriptional responses[J]. Dev Dyn, 2020, 249(4): 483-495.
doi: 10.1002/dvdy.v249.4 URL |
[43] |
Hu ZJ, Lu SJ, Wang MJ, et al. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice[J]. Mol Plant, 2018, 11(5): 736-749.
doi: 10.1016/j.molp.2018.03.005 URL |
[44] |
Qiao JY, Jiang HZ, Lin YQ, et al. A novel miR167a-OsARF6-OsAUX3 module regulates grain length and weight in rice[J]. Mol Plant, 2021, 14(10): 1683-1698.
doi: 10.1016/j.molp.2021.06.023 URL |
[45] |
Zhang ZY, Li JJ, Tang ZS, et al. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice[J]. J Exp Bot, 2018, 69(20): 4723-4737.
doi: 10.1093/jxb/ery256 pmid: 30295905 |
[46] |
Zhang SY, Zhu LM, Shen CB, et al. Natural allelic variation in a modulator of auxin homeostasis improves grain yield and nitrogen use efficiency in rice[J]. Plant Cell, 2021, 33(3): 566-580.
doi: 10.1093/plcell/koaa037 URL |
[47] |
Guo T, Chen K, Dong NQ, et al. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice[J]. J Integr Plant Biol, 2020, 62(5): 581-600.
doi: 10.1111/jipb.v62.5 URL |
[48] | Dong NQ, Sun YW, Guo T, et al. UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice[J]. Nat Commu, 2020, 11(1): 2629. |
[49] |
Davière JM, Achard P. Gibberellin signaling in plants[J]. Development, 2013, 140(6): 1147-1151.
doi: 10.1242/dev.087650 URL |
[50] |
Kumar A, Singh A, Kumar P, et al. Giberellic acid-stimulated transcript proteins evolved through successive conjugation of novel motifs and their subfunctionalization[J]. Plant Physiol, 2019, 180(2): 998-1012.
doi: 10.1104/pp.19.00305 pmid: 30971449 |
[51] |
Shi CL, Dong NQ, Guo T, et al. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway[J]. Plant J, 2020, 103(3): 1174-1188.
doi: 10.1111/tpj.v103.3 URL |
[52] |
Li XB, Shi SY, Tao QD, et al. OsGASR9 positively regulates grain size and yield in rice(Oryza sativa)[J]. Plant Sci, 2019, 286: 17-27.
doi: 10.1016/j.plantsci.2019.03.008 URL |
[53] |
Lan J, Lin QB, Zhou CL, et al. Small grain and semi-dwarf 3, a WRKY transcription factor, negatively regulates plant height and grain size by stabilizing SLR1 expression in rice[J]. Plant Mol Biol, 2020, 104(4): 429-450.
doi: 10.1007/s11103-020-01049-0 |
[54] |
Chen WW, Cheng ZJ, Liu LL, et al. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice[J]. Plant Sci, 2019, 288: 110208.
doi: 10.1016/j.plantsci.2019.110208 URL |
[55] |
Jang S, Cho JY, Do GR, et al. Modulation of rice leaf angle and grain size by expressing OsBCL1 and OsBCL2 under the control of OsBUL1 promoter[J]. Int J Mol Sci, 2021, 22(15): 7792.
doi: 10.3390/ijms22157792 URL |
[56] |
Liu RJ, Feng QF, Li PB, et al. GLW7.1, a strong functional allele of Ghd7, enhances grain size in rice[J]. Int J Mol Sci, 2022, 23(15): 8715.
doi: 10.3390/ijms23158715 URL |
[57] |
Yun P, Li YB, Wu B, et al. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice[J]. Theor Appl Genet, 2022, 135(10): 3417-3431.
doi: 10.1007/s00122-022-04189-7 |
[58] |
Hussain S, Huang J, Zhu CQ, et al. Pyridoxal 5'-phosphate enhances the growth and morpho-physiological characteristics of rice cultivars by mitigating the ethylene accumulation under salinity stress[J]. Plant Physiol Biochem, 2020, 154: 782-795.
doi: 10.1016/j.plaphy.2020.05.035 URL |
[59] |
Tao YJ, Wang J, Miao J, et al. The spermine synthase OsSPMS1 regulates seed germination, grain size, and yield[J]. Plant Physiol, 2018, 178(4): 1522-1536.
doi: 10.1104/pp.18.00877 pmid: 30190417 |
[60] |
Zhao H, Yin CC, Ma B, et al. Ethylene signaling in rice and arabidopsis: new regulators and mechanisms[J]. J Integr Plant Biol, 2021, 63(1): 102-125.
doi: 10.1111/jipb.v63.1 URL |
[61] |
Liu C, Ma T, Yuan DY, et al. The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice[J]. Plant Biotechnol J, 2022, 20(8): 1470-1486.
doi: 10.1111/pbi.v20.8 URL |
[62] |
Uji Y, Kashihara K, Kiyama H, et al. Jasmonic acid-induced VQ-motif-containing protein OsVQ13 influences the OsWRKY45 signaling pathway and grain size by associating with OsMPK6 in rice[J]. Int J Mol Sci, 2019, 20(12): 2917.
doi: 10.3390/ijms20122917 URL |
[63] |
Callens C, Tucker MR, Zhang DB, et al. Dissecting the role of MADS-box genes in monocot floral development and diversity[J]. J Exp Bot, 2018, 69(10): 2435-2459.
doi: 10.1093/jxb/ery086 pmid: 29718461 |
[64] |
Chongloi GL, Prakash S, Vijayraghavan U. Regulation of meristem maintenance and organ identity during rice reproductive development[J]. J Exp Bot, 2019, 70(6): 1719-1736.
doi: 10.1093/jxb/erz046 pmid: 30753578 |
[65] |
Mehra P, Pandey BK, Verma L, et al. OsJAZ11 regulates spikelet and seed development in rice[J]. Plant Direct, 2022, 6(5): e401.
doi: 10.1002/pld3.v6.5 URL |
[66] |
Kato T, Sakurai N, Kuraishi S. The changes of endogenous abscisic acid in developing grain of two rice cultivars with different grain size[J]. Japanese Journal of Crop Science, 1993, 62(3): 456-461.
doi: 10.1626/jcs.62.456 URL |
[67] |
Chen Y, Xiang ZP, Liu M, et al. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice[J]. Plant, Cell Environ, 2023, 46(4): 1384-1401.
doi: 10.1111/pce.14480 URL |
[68] |
Liu DP, Zhao H, Xiao YH, et al. A cryptic inhibitor of cytokinin phosphorelay controls rice grain size[J]. Mol Plant, 2022, 15(2): 293-307.
doi: 10.1016/j.molp.2021.09.010 URL |
[69] |
Gao XY, Zhang JQ, Zhang XJ, et al. Rice qGL3/OsPPKL1 functions with the GSK3/SHAGGY-like kinase OsGSK3 to modulate brassinosteroid signaling[J]. Plant Cell, 2019, 31(5): 1077-1093.
doi: 10.1105/tpc.18.00836 URL |
[70] | Tian P, Liu JF, Yan BH, et al. OsBSK3 positively regulates grain length and weight by inhibiting the phosphatase activity of OsPPKL1[J]. Plants(Basel), 2022, 11(12): 1586. |
[71] | Zhang JQ, Gao XY, Cai G, et al. An adenylate kinase OsAK3 involves brassinosteroid signaling and grain length in rice(Oryza sativa L.)[J]. Rice(NY), 2021, 14(1): 105. |
[72] | Tao YJ, Miao J, Wang J, et al. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice[J]. Rice(NY), 2020, 13(1): 76. |
[73] |
Zhang DP, Zhang MY, Liang JS. RGB1 regulates grain development and starch accumulation through its effect on OsYUC11-mediated auxin biosynthesis in rice endosperm cells[J]. Front Plant Sci, 2021, 12: 585174.
doi: 10.3389/fpls.2021.585174 URL |
[74] |
Huang XZ, Qian Q, Liu ZB, et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nat Genet, 2009, 41(4): 494-497.
doi: 10.1038/ng.352 |
[75] | Zhang DP, Zhang MY, Zhou Y, et al. The rice G protein γ subunit DEP1/qPE9-1 positively regulates grain-filling process by increasing auxin and cytokinin content in rice grains[J]. Rice(NY), 2019, 12(1): 91. |
[76] |
Jin SK, Zhang MQ, Leng YJ, et al. OsNAC129 regulates seed development and plant growth and participates in the brassinosteroid signaling pathway[J]. Front Plant Sci, 2022, 13: 905148.
doi: 10.3389/fpls.2022.905148 URL |
[77] |
Chen HY, Yu H, Jiang WZ, et al. Overexpression of ovate family protein 22 confers multiple morphological changes and represses gibberellin and brassinosteroid signalings in transgenic rice[J]. Plant Sci, 2021, 304: 110734.
doi: 10.1016/j.plantsci.2020.110734 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[4] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[5] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[6] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[7] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[8] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[9] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[10] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[11] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[12] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[13] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[14] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[15] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||