生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 27-39.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0121
徐发迪1(), 徐康1, 孙东明1, 李萌蕾1, 赵建志1,2(), 鲍晓明1()
收稿日期:
2023-02-14
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
赵建志,男,博士,副教授,研究方向:生物工程;E-mail: zhjzh2006@126.com;作者简介:
徐发迪,男,硕士研究生,研究方向:生物工程;E-mail: xu_fadi@163.com
基金资助:
XU Fa-di1(), XU Kang1, SUN Dong-ming1, LI Meng-lei1, ZHAO Jian-zhi1,2(), BAO Xiao-ming1()
Received:
2023-02-14
Published:
2023-09-26
Online:
2023-10-24
摘要:
木质纤维素类生物质作为一种廉价且储量丰富的可再生原料,可通过预处理、酶解和微生物发酵等过程转化为纤维素燃料乙醇,近几十年来受到世界各国的广泛关注。杨木是一种人工广泛种植的速生硬木,主要用于造纸工业,而伴随产生大量枝桠等废弃物。因其富含纤维素和半纤维素组分,被认为是纤维素乙醇生产的优良木质纤维素原料。聚焦于杨木在纤维素乙醇生产中的应用,介绍了杨木的组成及结构特点,重点综述了杨木在预处理技术、预处理原料的酶解、微生物发酵等方面的研究进展。最后,归纳总结了限制杨木在纤维素乙醇应用中的技术障碍及困难,进而分析提出了相应解决对策并展望了其应用前景。
徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39.
XU Fa-di, XU Kang, SUN Dong-ming, LI Meng-lei, ZHAO Jian-zhi, BAO Xiao-ming. Research Progress in Second-generation Fuel Ethanol Technology Based on Poplar(Populus sp.)[J]. Biotechnology Bulletin, 2023, 39(9): 27-39.
种类Type | 纤维素Cellulose/% | 半纤维素Hemicellulose/% | 木质素Lignin/% | 参考文献References |
---|---|---|---|---|
狼尾草Pennisetum purpereum | 35.24±0.38 | 25.12±3.74 | 21.51±1.33 | [ |
菹草Curly-leaf pondweed | 33.60±0.20 | 12.00±1.20 | 16.70±1.80 | [ |
玉米秸秆Corn stover | 37.19±0.26 | 19.20±0.02 | 16.63±0.08 | [ |
玉米芯Corncob | 32.70±0.72 | 28.54±0.85 | 13.91±0.66 | [ |
小麦秸秆Wheat straw | 40.60±0.50 | 24.80±0.50 | 18.20±0.50 | [ |
松木Pine wood | 47.36±0.20 | 16.48±0.27 | 25.16±0.20 | [ |
杨木Poplar wood | 44.00±0.50 | 18.40±0.10 | 23.00±0.60 | [ |
杨木弃物Poplar waste | 40.59±0.12 | 13.78±0.06 | 27.24±1.26 | 本实验室数据Our laboratory data |
表1 不同木质纤维素原料组成成分含量
Table 1 Contents of different lignocellulose raw material components
种类Type | 纤维素Cellulose/% | 半纤维素Hemicellulose/% | 木质素Lignin/% | 参考文献References |
---|---|---|---|---|
狼尾草Pennisetum purpereum | 35.24±0.38 | 25.12±3.74 | 21.51±1.33 | [ |
菹草Curly-leaf pondweed | 33.60±0.20 | 12.00±1.20 | 16.70±1.80 | [ |
玉米秸秆Corn stover | 37.19±0.26 | 19.20±0.02 | 16.63±0.08 | [ |
玉米芯Corncob | 32.70±0.72 | 28.54±0.85 | 13.91±0.66 | [ |
小麦秸秆Wheat straw | 40.60±0.50 | 24.80±0.50 | 18.20±0.50 | [ |
松木Pine wood | 47.36±0.20 | 16.48±0.27 | 25.16±0.20 | [ |
杨木Poplar wood | 44.00±0.50 | 18.40±0.10 | 23.00±0.60 | [ |
杨木弃物Poplar waste | 40.59±0.12 | 13.78±0.06 | 27.24±1.26 | 本实验室数据Our laboratory data |
预处理方式 Preprocessing method | 试剂 Reagent | 方法 Method | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
稀酸Dilute acid | 硫酸Sulphuric acid | 酸法Acid process | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
蒸汽爆破Steam explosion | 蒸馏水Distilled water | 蒸汽爆破Steam explosion | 预处理时间短、可连续处理、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
稀碱Dilute alkali | 氢氧化钠Sodium hydrate | 碱法Alkaline process | 预处理条件温和、不产生抑制物、能脱除少部分木质素 | 破坏能力较弱、纤维素和半纤维素损失、木质素脱除不彻底 |
低共熔溶剂Deep eutectic solvents | 低共熔溶剂Deep eutectic solvents | 离子液体Ionic liquid | 预处理条件温和、不产生抑制物、能脱除部分木质素、可重复利用 | 半纤维素损失 |
碱性磺化-蒸汽爆破Alkaline sulfonation-steam explosion | 硫酸钠、碳酸氢钠Sodium sulfate, baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
碱性氧化-蒸汽爆破Alkaline oxidation-steam explosion | 碳酸氢钠Baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
稀酸-稀碱Dilute acid-alkali | 硫酸、氢氧化钠Sulphuric acid, sodium hydrate | 组合法Combination method | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 纤维素损失、木质素脱除不彻底 |
乙酸-亚氯酸钠Acetic acid-sodium chlorite | 乙酸、亚氯酸钠Acetic acid, sodium chlorite | 组合法Combination method | 操作简单、成本廉价、预处理条件温和、能脱除部分木质素、有效水解半纤维素 | 试剂本身具有一定毒性、产生抑制物 |
表2 不同预处理方式对比
Table 2 Comparison of different preprocessing methods
预处理方式 Preprocessing method | 试剂 Reagent | 方法 Method | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
稀酸Dilute acid | 硫酸Sulphuric acid | 酸法Acid process | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
蒸汽爆破Steam explosion | 蒸馏水Distilled water | 蒸汽爆破Steam explosion | 预处理时间短、可连续处理、有效水解半纤维素 | 不具备木质素脱除能力、产生抑制物 |
稀碱Dilute alkali | 氢氧化钠Sodium hydrate | 碱法Alkaline process | 预处理条件温和、不产生抑制物、能脱除少部分木质素 | 破坏能力较弱、纤维素和半纤维素损失、木质素脱除不彻底 |
低共熔溶剂Deep eutectic solvents | 低共熔溶剂Deep eutectic solvents | 离子液体Ionic liquid | 预处理条件温和、不产生抑制物、能脱除部分木质素、可重复利用 | 半纤维素损失 |
碱性磺化-蒸汽爆破Alkaline sulfonation-steam explosion | 硫酸钠、碳酸氢钠Sodium sulfate, baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
碱性氧化-蒸汽爆破Alkaline oxidation-steam explosion | 碳酸氢钠Baking soda | 组合法Combination method | 能脱除部分木质素、预处理时间短、可连续处理、有效水解半纤维素 | 产生抑制物 |
稀酸-稀碱Dilute acid-alkali | 硫酸、氢氧化钠Sulphuric acid, sodium hydrate | 组合法Combination method | 对设备腐蚀性低、危险性小、操作简单、成本廉价、有效水解半纤维素 | 纤维素损失、木质素脱除不彻底 |
乙酸-亚氯酸钠Acetic acid-sodium chlorite | 乙酸、亚氯酸钠Acetic acid, sodium chlorite | 组合法Combination method | 操作简单、成本廉价、预处理条件温和、能脱除部分木质素、有效水解半纤维素 | 试剂本身具有一定毒性、产生抑制物 |
因素Factor | 分类Classification | 特点Characteristic |
---|---|---|
酶体系Enzyme system | 内切葡聚糖酶Endo-1,4-β-D-glucanase | 随机劈开纤维素纤维内部的β-1,4糖苷键 |
外切葡聚糖酶Exo-1,4-β-D-glucannase | 从游离链末端依次切割纤维二糖单元 | |
β-葡萄糖苷酶β-1,4- glucosidase | 水解纤维二糖释放葡萄糖单元 | |
木聚糖酶Xylanase | 降解预处理未能解聚的半纤维素 | |
裂解多糖单加氧酶Lytic polysaccharide monooxygenase | 具有氧化裂解作用,破坏纤维素的结晶结构,提供更多的酶解结合位点 | |
菌种选育Strain breeding | 里氏木霉Trichoderma reesei | 具有抗代谢抑制能力,生长环境要求较低,菌株安全无毒,酶组分易于提取I |
青霉Penicillium | 酶组分比较齐全,各酶组分之间的比例较为均衡 | |
酶解方式 Enzymatic method | 高固底物High solid loading | 通过高固载量,提高水解液糖浓度 |
分批补料Fed-batch | 具有较高的流动性,底物与纤维素酶接触更充分 |
表3 影响预处理原料酶解的因素
Table 3 Factors affecting the enzymatic digestion of the pretreatment ingredients
因素Factor | 分类Classification | 特点Characteristic |
---|---|---|
酶体系Enzyme system | 内切葡聚糖酶Endo-1,4-β-D-glucanase | 随机劈开纤维素纤维内部的β-1,4糖苷键 |
外切葡聚糖酶Exo-1,4-β-D-glucannase | 从游离链末端依次切割纤维二糖单元 | |
β-葡萄糖苷酶β-1,4- glucosidase | 水解纤维二糖释放葡萄糖单元 | |
木聚糖酶Xylanase | 降解预处理未能解聚的半纤维素 | |
裂解多糖单加氧酶Lytic polysaccharide monooxygenase | 具有氧化裂解作用,破坏纤维素的结晶结构,提供更多的酶解结合位点 | |
菌种选育Strain breeding | 里氏木霉Trichoderma reesei | 具有抗代谢抑制能力,生长环境要求较低,菌株安全无毒,酶组分易于提取I |
青霉Penicillium | 酶组分比较齐全,各酶组分之间的比例较为均衡 | |
酶解方式 Enzymatic method | 高固底物High solid loading | 通过高固载量,提高水解液糖浓度 |
分批补料Fed-batch | 具有较高的流动性,底物与纤维素酶接触更充分 |
方式Way | 分类Classification | 特点Characteristic |
---|---|---|
水解液脱毒Hydrolysate detoxication | 化学法Chemical method | 利用化学试剂,通过一次性加入,降低抑制物对发酵微生物的毒性 |
物理法Physical method | 利用抑制物特性,采用物理方法将其从水解液中进行分离 | |
组合法Combination method | 结合化学法和物理法的优点,能够显著降低水解液的毒性 | |
微生物定制Microbial customization | 非理性改造Irrational transformation | 通过诱变及适应性进化等非理性的方式获得突变微生物 |
理性改造Rational transformation | 通过基因工程、代谢工程及合成生物学等技术对微生物进行理性改造 | |
发酵方式选择Selection of fermentation mode | 间歇发酵Intermittent fermentation | 操作简单、不容易染菌、投资低、生产能力低、产品质量不稳定 |
连续发酵Continuous fermentation | 可长期连续进行、生产能力高、产品质量稳定、生产操作控制要求高、投资高、杂菌污染 | |
批式流加发酵Fed-batch fermentation | 可长期连续进行、生产能力高、产品质量稳定、可解除营养物基质的抑制和产物反馈抑制、提高产物的转化率 | |
发酵过程控制Fermentation process control | pH | 有效提高发酵液发酵性能,缓解弱酸类抑制物毒性 |
通气量Ventilatory capacity | 控制菌体生长,使更多的可发酵性糖流向产物合成 | |
温度Temperature | 影响酶反应的速率,影响微生物的代谢调控机制,影响发酵液的理化性质 | |
种子活化Strain activation | 影响微生物发酵能力,影响产物产量和转化效率 |
表4 提升原料水解液发酵性能的方式
Table 4 Ways to improve the fermentation performance of the raw material hydrolysate
方式Way | 分类Classification | 特点Characteristic |
---|---|---|
水解液脱毒Hydrolysate detoxication | 化学法Chemical method | 利用化学试剂,通过一次性加入,降低抑制物对发酵微生物的毒性 |
物理法Physical method | 利用抑制物特性,采用物理方法将其从水解液中进行分离 | |
组合法Combination method | 结合化学法和物理法的优点,能够显著降低水解液的毒性 | |
微生物定制Microbial customization | 非理性改造Irrational transformation | 通过诱变及适应性进化等非理性的方式获得突变微生物 |
理性改造Rational transformation | 通过基因工程、代谢工程及合成生物学等技术对微生物进行理性改造 | |
发酵方式选择Selection of fermentation mode | 间歇发酵Intermittent fermentation | 操作简单、不容易染菌、投资低、生产能力低、产品质量不稳定 |
连续发酵Continuous fermentation | 可长期连续进行、生产能力高、产品质量稳定、生产操作控制要求高、投资高、杂菌污染 | |
批式流加发酵Fed-batch fermentation | 可长期连续进行、生产能力高、产品质量稳定、可解除营养物基质的抑制和产物反馈抑制、提高产物的转化率 | |
发酵过程控制Fermentation process control | pH | 有效提高发酵液发酵性能,缓解弱酸类抑制物毒性 |
通气量Ventilatory capacity | 控制菌体生长,使更多的可发酵性糖流向产物合成 | |
温度Temperature | 影响酶反应的速率,影响微生物的代谢调控机制,影响发酵液的理化性质 | |
种子活化Strain activation | 影响微生物发酵能力,影响产物产量和转化效率 |
[1] |
Ramamurthy PC, Singh S, Kapoor D, et al. Microbial biotechnological approaches: renewable bioprocessing for the future energy systems[J]. Microb Cell Fact, 2021, 20(1): 55.
doi: 10.1186/s12934-021-01547-w pmid: 33653344 |
[2] |
Ahmad A, Muria SR, Tuljannah M. Production of second generation bioethanol from palm fruit fiber biomass using Saccharomyces cerevisiae[J]. J Phys: Conf Ser, 2019, 1295(1): 012030.
doi: 10.1088/1742-6596/1295/1/012030 |
[3] |
Branco R, Serafim L, Xavier A. Second generation bioethanol production: on the use of pulp and paper industry wastes as feedstock[J]. Fermentation, 2018, 5(1): 4.
doi: 10.3390/fermentation5010004 URL |
[4] |
Ouyang SP, Qiao H, Xu Q, et al. Development of two-step pretreatment of Chinese fir sawdust using dilute sulfuric acid followed by sodium chlorite for bioethanol production[J]. Cellulose, 2019, 26(15): 8513-8524.
doi: 10.1007/s10570-019-02519-5 |
[5] |
Bay MS, Karimi K, Nasr Esfahany M, et al. Structural modification of pine and poplar wood by alkali pretreatment to improve ethanol production[J]. Ind Crops Prod, 2020, 152: 112506.
doi: 10.1016/j.indcrop.2020.112506 URL |
[6] | Yang MY, Lan M, Gao XF, et al. Sequential dilute acid/alkali pretreatment of corncobs for ethanol production[J]. Energy Sources A Recovery Util Environ Eff, 2021, 43(14): 1769-1778. |
[7] |
Mkabayi L, Malgas S, Wilhelmi BS, et al. Evaluating feruloyl esterase-xylanase synergism for hydroxycinnamic acid and xylo-oligosaccharide production from untreated, hydrothermally pre-treated and dilute-acid pre-treated corn cobs[J]. Agronomy, 2020, 10(5): 688.
doi: 10.3390/agronomy10050688 URL |
[8] |
Zhao QH, Wang L, Chen HZ. Effect of novel pretreatment of steam explosion associated with ammonium sulfite process on enzymatic hydrolysis of corn straw[J]. Appl Biochem Biotechnol, 2019, 189(2): 485-497.
doi: 10.1007/s12010-019-03018-w pmid: 31049884 |
[9] |
Hemansi, Gupta R, Aswal VK, et al. Sequential dilute acid and alkali deconstruction of sugarcane bagasse for improved hydrolysis: insight from small angle neutron scattering(SANS)[J]. Renew Energy, 2020, 147: 2091-2101.
doi: 10.1016/j.renene.2019.10.003 URL |
[10] | 尹艺冉, 王进, 彭书传, 等. 酸处理菹草制备生物乙醇和甲烷过程研究[J]. 合肥工业大学学报: 自然科学版, 2015, 38(1): 103-108. |
Yin YR, Wang J, Peng SC, et al. Research on preparation process of bio-ethanol and methane with acid pretreated curly-leaf pondweed[J]. J Hefei Univ Technol Nat Sci, 2015, 38(1): 103-108. | |
[11] | 陈乐, 左然然, 李建安, 等. 狼尾草高底物同步糖化乙醇发酵全残留物产甲烷特性研究[J]. 太阳能学报, 2020, 41(3): 345-350. |
Chen L, Zuo RR, Li JA, et al. Methane production characteristics of stillage from ethanol fermentation of Pennisetum purpereum[J]. Acta Energiae Solaris Sin, 2020, 41(3): 345-350. | |
[12] |
Zhang JZ, Qu XX, Zhu GY, et al. An optimum combined hydrolysis factor enhances hybrid Pennisetum pretreatment in bio-conversion[J]. Cellulose, 2019, 26(15): 8439-8451.
doi: 10.1007/s10570-019-02561-3 |
[13] | 田芳, 李凡, 袁敬伟, 等. 纤维素乙醇产业现状及关键过程技术难点[J]. 当代化工, 2019, 48(9): 2051-2056. |
Tian F, Li F, Yuan JW, et al. Industrialization status and key process technical difficulties of cellulose ethanol[J]. Contemp Chem Ind, 2019, 48(9): 2051-2056. | |
[14] |
Straub CT, Khatibi PA, Wang JP, et al. Quantitative fermentation of unpretreated transgenic poplar by Caldicellulosiruptor bescii[J]. Nat Commun, 2019, 10: 3548.
doi: 10.1038/s41467-019-11376-6 |
[15] |
Sánchez ÓJ, Cardona CA. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresour Technol, 2008, 99(13): 5270-5295.
doi: 10.1016/j.biortech.2007.11.013 URL |
[16] |
Bonawitz ND, Chapple C. Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty?[J]. Curr Opin Biotechnol, 2013, 24(2): 336-343.
doi: 10.1016/j.copbio.2012.11.004 URL |
[17] |
Ying WJ, Xu Y, Zhang JH. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar[J]. Bioresour Technol, 2021, 321: 124472.
doi: 10.1016/j.biortech.2020.124472 URL |
[18] | 陈胜杰, 高翔, 袁戎宇. 玉米秸秆生产燃料乙醇的SHF发酵工艺优化[J]. 发酵科技通讯, 2020, 49(1): 32-36, 53 |
Chen SJ, Gao X, Yuan RY. Optimizing the SHF fermentation process to increase production of fuel ethanol based on corn stover[J]. Fajiao Keji Tongxun, 2020, 49(1): 32-36, 53 | |
[19] |
Jing YY, Li F, Li YM, et al. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: effect of liquid-solid ratio[J]. Bioresour Technol, 2022, 349: 126867.
doi: 10.1016/j.biortech.2022.126867 URL |
[20] |
Zhu SD, Huang WX, Huang WJ, et al. Coproduction of xylose, lignosulfonate and ethanol from wheat straw[J]. Bioresour Technol, 2015, 185: 234-239.
doi: 10.1016/j.biortech.2015.02.115 URL |
[21] |
Meenakshisundaram S, Fayeulle A, Leonard E, et al. Fiber degradation and carbohydrate production by combined biological and chemical/physicochemical pretreatment methods of lignocellulosic biomass-A review[J]. Bioresour Technol, 2021, 331: 125053.
doi: 10.1016/j.biortech.2021.125053 URL |
[22] |
Vermaas JV, Petridis L, Qi XH, et al. Mechanism of lignin inhibition of enzymatic biomass deconstruction[J]. Biotechnol Biofuels, 2015, 8(1): 1-16.
doi: 10.1186/s13068-014-0179-6 URL |
[23] |
Rivas S, Rigual V, Domínguez JC, et al. A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses[J]. Food Bioprod Process, 2020, 123: 398-408.
doi: 10.1016/j.fbp.2020.07.018 URL |
[24] |
Tan LP, Liu ZY, Zhang TT, et al. Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment[J]. Bioresour Technol, 2020, 302: 122795.
doi: 10.1016/j.biortech.2020.122795 URL |
[25] | 苏秀茹, 傅英娟, 李宗全, 等. 木质素的分离提取与高值化应用研究进展[J]. 大连工业大学学报, 2021, 40(2): 107-115. |
Su XR, Fu YJ, Li ZQ, et al. Research progress on extraction and high-value application of lignin[J]. J Dalian Polytech Univ, 2021, 40(2): 107-115. | |
[26] | 孙卓华, 王雪琪, 袁同琦. 基于木质素优先降解策略的木质素高值化利用研究进展[J]. 林业工程学报, 2022, 7(4): 1-12. |
Sun ZH, Wang XQ, Yuan TQ. Recent advances in valorization of lignin based on the lignin-first depolymerization strategy[J]. J For Eng, 2022, 7(4): 1-12. | |
[27] |
Liu W, Wu RJ, Hu YY, et al. Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment[J]. Bioresour Technol, 2020, 316: 123920.
doi: 10.1016/j.biortech.2020.123920 URL |
[28] | 李亚茹, 时君友, 宋晓敏, 等. 玉米秸秆组分分离预处理方法的研究进展[J]. 林产工业, 2021, 58(10): 73-76, 79. |
Li YR, Shi JY, Song XM, et al. Research progress on separation and pretreatment methods of corn straw components[J]. China For Prod Ind, 2021, 58(10): 73-76, 79. | |
[29] |
Guo YJ, Huang JM, Xu N, et al. A detoxification-free process for enhanced ethanol production from corn fiber under semi-simultaneous saccharification and fermentation[J]. Front Microbiol, 2022, 13: 861918.
doi: 10.3389/fmicb.2022.861918 URL |
[30] |
Ziegler-Devin I, Chrusciel L, Brosse N. Steam explosion pretreatment of lignocellulosic biomass: a mini-review of theorical and experimental approaches[J]. Front Chem, 2021, 9: 705358.
doi: 10.3389/fchem.2021.705358 URL |
[31] |
Biswas R, Teller PJ, Khan MU, et al. Sugar production from hybrid poplar sawdust: optimization of enzymatic hydrolysis and wet explosion pretreatment[J]. Molecules, 2020, 25(15): 3396.
doi: 10.3390/molecules25153396 URL |
[32] |
Tang Y, Dou XL, Hu JG, et al. Lignin sulfonation and SO2 addition enhance the hydrolyzability of deacetylated and then steam-pretreated poplar with reduced inhibitor formation[J]. Appl Biochem Biotechnol, 2018, 184(1): 264-277.
doi: 10.1007/s12010-017-2545-x |
[33] |
Zhu JY, Wan CX, Li YB. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment[J]. Bioresour Technol, 2010, 101(19): 7523-7528.
doi: 10.1016/j.biortech.2010.04.060 URL |
[34] | 皮奇峰, 朱妤婷, 吕微, 等. 低共熔溶剂低温预处理杨木及三组分结构演变规律研究[J]. 燃料化学学报, 2021, 49(12): 1791-1801. |
Pi QF, Zhu YT, Lv W, et al. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. J Fuel Chem Technol, 2021, 49(12): 1791-1801.
doi: 10.1016/S1872-5813(21)60086-5 URL |
|
[35] | 周敏姑, 郭英杰, 郝子越, 等. 氯化胆碱/乳酸低共熔溶剂预处理对杨木酶水解特性的影响[J]. 西北农林科技大学学报: 自然科学版, 2020, 48(12): 55-63. |
Zhou MG, Guo YJ, Hao ZY, et al. Effects of choline chloride/lactic acid deep eutectic solvents pretreatment on enzymatic hydrolysis of poplar[J]. J Northwest A F Univ Nat Sci Ed, 2020, 48(12): 55-63. | |
[36] | 储秋露, 陈雪艳, 宋凯, 等. 两步法预处理对杨木酶水解及木质素吸附性能的影响[J]. 林产化学与工业, 2019, 39(6): 68-74. |
Chu QL, Chen XY, Song K, et al. Effects of two-stage pretreatment on enzymatic hydrolysis of poplar and adsorption performance of lignin[J]. Chem Ind For Prod, 2019, 39(6): 68-74. | |
[37] |
Shi FX, Wang YJ, Davaritouchaee M, et al. Directional structure modification of poplar biomass-inspired high efficacy of enzymatic hydrolysis by sequential dilute acid-alkali treatment[J]. ACS Omega, 2020, 5(38): 24780-24789.
doi: 10.1021/acsomega.0c03419 pmid: 33015496 |
[38] |
Wen PY, Zhang T, Xu Y, et al. Co-production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and sodium chlorite pretreatment[J]. Ind Crops Prod, 2020, 152: 112500.
doi: 10.1016/j.indcrop.2020.112500 URL |
[39] |
Du J, Liang JR, Gao XH, et al. Optimization of an artificial cellulase cocktail for high-solids enzymatic hydrolysis of cellulosic materials with different pretreatment methods[J]. Bioresour Technol, 2020, 295: 122272.
doi: 10.1016/j.biortech.2019.122272 URL |
[40] | 宋晓菲, 冯超. 裂解性多糖单加氧酶及其应用研究进展[J]. 微生物学报, 2023. DOI: 10.13343/j.cnki.wsxb.20220798. |
Song XF, Feng C. Lytic polysaccharide monooxygenase and its application[J]. J Microbiol, 2023. DOI: 10.13343/j.cnki.wsxb.20220798. | |
[41] |
Pant S, Ritika, Nag P, et al. Employment of the CRISPR/Cas9 system to improve cellulase production in Trichoderma reesei[J]. Biotechnol Adv, 2022, 60: 108022.
doi: 10.1016/j.biotechadv.2022.108022 URL |
[42] | 顾斌涛, 熊大维. 里氏木霉固态发酵产β-葡萄糖苷酶的研究[J]. 安徽农业科学, 2020, 48(18): 1-3. |
Gu BT, Xiong DW. Study on solid-state fermentation of Trichoderma reesei to produce β-glucosidase[J]. J Anhui Agric Sci, 2020, 48(18): 1-3. | |
[43] | 刘国栋, 高丽伟, 曲音波. 青霉生产木质纤维素降解酶系的研究进展[J]. 生物工程学报, 2021, 37(3): 1058-1069. |
Liu GD, Gao LW, Qu YB. Progress in the production of lignocellulolytic enzyme systems using Penicillium species[J]. Chin J Biotechnol, 2021, 37(3): 1058-1069. | |
[44] | 曲音波, 刘国栋, 赵建. 纤维素乙醇产业化的技术突破点之一——原料和预处理工艺特异性的高效纤维降解复合酶系就地生产[J]. 高科技与产业化, 2018(6): 64-68. |
Qu YB, Liu GD, Zhao J. One of the technical breakthroughs in the industrialization of cellulose ethanol—on-site production of high-efficiency fiber degradation complex enzyme system with specific raw materials and pretreatment process[J]. High Technol Commer, 2018(6): 64-68. | |
[45] |
Ying WJ, Zhu JJ, Xu Y, et al. High solid loading enzymatic hydrolysis of acetic acid-peroxide/acetic acid pretreated poplar and cellulase recycling[J]. Bioresour Technol, 2021, 340: 125624.
doi: 10.1016/j.biortech.2021.125624 URL |
[46] |
da Silva AS, Espinheira RP, Teixeira RSS, et al. Constraints and advances in high-solids enzymatic hydrolysis of lignocellulosic biomass: a critical review[J]. Biotechnol Biofuels, 2020, 13: 58.
doi: 10.1186/s13068-020-01697-w pmid: 32211072 |
[47] |
Vanmarcke G, Demeke MM, Foulquié-Moreno MR, et al. Identification of the major fermentation inhibitors of recombinant 2G yeasts in diverse lignocellulose hydrolysates[J]. Biotechnol Biofuels, 2021, 14(1): 92.
doi: 10.1186/s13068-021-01935-9 pmid: 33836811 |
[48] |
Hong JW, Gam DH, Kim JH, et al. Process development for the detoxification of fermentation inhibitors from acid pretreated microalgae hydrolysate[J]. Molecules, 2021, 26(9): 2435.
doi: 10.3390/molecules26092435 URL |
[49] |
Cámara E, Olsson L, Zrimec J, et al. Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates[J]. Biotechnol Adv, 2022, 57: 107947.
doi: 10.1016/j.biotechadv.2022.107947 URL |
[50] |
Abdulrahman A, van Walsum GP, Um BH. Acetic acid removal from pre-pulping wood extract with recovery and recycling of extraction solvents[J]. Appl Biochem Biotechnol, 2019, 187(1): 378-395.
doi: 10.1007/s12010-018-2826-z pmid: 29961903 |
[51] |
Mechmech F, Chadjaa H, Rahni M, et al. Improvement of butanol production from a hardwood hemicelluloses hydrolysate by combined sugar concentration and phenols removal[J]. Bioresour Technol, 2015, 192: 287-295.
doi: 10.1016/j.biortech.2015.05.012 URL |
[52] |
Sarawan C, Suinyuy TN, Sewsynker-Sukai Y, et al. Optimized activated charcoal detoxification of acid-pretreated lignocellulosic substrate and assessment for bioethanol production[J]. Bioresour Technol, 2019, 286: 121403.
doi: 10.1016/j.biortech.2019.121403 URL |
[53] |
Zhang Y, Xia CL, Lu MM, et al. Effect of overliming and activated carbon detoxification on inhibitors removal and butanol fermentation of poplar prehydrolysates[J]. Biotechnol Biofuels, 2018, 11: 178.
doi: 10.1186/s13068-018-1182-0 pmid: 29983741 |
[54] |
Kondaveeti S, Pagolu R, Patel SKS, et al. Bioelectrochemical detoxification of phenolic compounds during enzymatic pre-treatment of rice straw[J]. J Microbiol Biotechnol, 2019, 29(11): 1760-1768.
doi: 10.4014/jmb.1909.09042 URL |
[55] | 张强, Thygesen A, Thomsen A. 不同脱毒方法对玉米秸秆水解液酒精发酵的影响[J]. 化工进展, 2011, 30(4): 739-742. |
Zhang Q, Thygesen A, Thomsen A. Effect of different detoxification methods on ethanol production from corn stover hydrolysate[J]. Chem Ind Eng Prog, 2011, 30(4): 739-742. | |
[56] | 徐勇, 顾依娜, 范丽, 等. 杨木稀酸预处理液木糖发酵产乙醇工艺条件的研究[J]. 林产化学与工业, 2010, 30(3): 19-23. |
Xu Y, Gu YN, Fan L, et al. Study on the processing conditions of xylose fermentation to produce fuel ethanol from dilute-acid pretreated poplar[J]. Chem Ind For Prod, 2010, 30(3): 19-23. | |
[57] | Salcedo A. Short note on Saccharomyces cerevisiae[J]. Fungal Genom Biol, 2022, 12(1): 1-2. |
[58] |
Baek SH, Kwon EY, Kim YH, et al. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2016, 100(6): 2737-2748.
doi: 10.1007/s00253-015-7174-0 URL |
[59] | 亓伟, 余强, 徐纯勋, 等. 酵母融合子F11葡萄糖木糖共发酵产乙醇性能及其耐毒性初探[J]. 太阳能学报, 2015, 36(6): 1403-1409. |
Qi W, Yu Q, Xu CX, et al. Evaluation on performanceandtoxic-toleranceabilityof yeast fusant f11 for ethanol production from glucose and xylose co-fermentation[J]. Acta Energiae Solaris Sin, 2015, 36(6): 1403-1409. | |
[60] |
Li HX, Shen Y, Wu ML, et al. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production[J]. Bioresour Bioprocess, 2016, 3(1): 51.
doi: 10.1186/s40643-016-0126-4 URL |
[61] |
Wei FQ, Li ML, Wang M, et al. A C6/C5 co-fermenting Saccharomyces cerevisiae strain with the alleviation of antagonism between xylose utilization and robustness[J]. GCB Bioenergy, 2021, 13(1): 83-97.
doi: 10.1111/gcbb.v13.1 URL |
[62] |
Ye HK, He YD, Xie YX, et al. Fed-batch fermentation of mixed carbon source significantly enhances the production of docosahexaenoic acid in Thraustochytriidae sp. PKU#Mn16 by differentially regulating fatty acids biosynthetic pathways[J]. Bioresour Technol, 2020, 297: 122402.
doi: 10.1016/j.biortech.2019.122402 URL |
[63] |
Wei S, Bai PG, Liu YN, et al. A Thi2p regulatory network controls the post-glucose effect of xylose utilization in Saccharomyces cerevisiae[J]. Front Microbiol, 2019, 10: 1649.
doi: 10.3389/fmicb.2019.01649 URL |
[64] |
Wei S, Liu YN, Wu ML, et al. Disruption of the transcription factors Thi2p and Nrm1p alleviates the post-glucose effect on xylose utilization in Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2018, 11: 112.
doi: 10.1186/s13068-018-1112-1 |
[65] |
Sharma S, Nair A, Sarma SJ. Biorefinery concept of simultaneous saccharification and co-fermentation: challenges and improvements[J]. Chem Eng Process Process Intensif, 2021, 169: 108634.
doi: 10.1016/j.cep.2021.108634 URL |
[66] |
Kim TH, Choi CH, Oh KK. Bioconversion of sawdust into ethanol using dilute sulfuric acid-assisted continuous twin screw-driven reactor pretreatment and fed-batch simultaneous saccharification and fermentation[J]. Bioresour Technol, 2013, 130: 306-313.
doi: 10.1016/j.biortech.2012.11.125 URL |
[67] |
Chen ST, Xu ZX, Ding BN, et al. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery[J]. Sci Adv, 2023, 9(5): eadd8835.
doi: 10.1126/sciadv.add8835 URL |
[68] |
Tufariello M, Grieco F. Advances in microbial fermentation processes[J]. Processes, 2021, 9(8): 1371.
doi: 10.3390/pr9081371 URL |
[69] |
Chai WY, Teo KTK, Tan MK, et al. Fermentation process control and optimization[J]. Chem Eng & Technol, 2022, 45(10): 1731-1747.
doi: 10.1002/ceat.v45.10 URL |
[70] |
Zhu YY, Wu L, Zhu JJ, et al. Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid[J]. Biochem Biophys Res Commun, 2018, 497(1): 7-12.
doi: 10.1016/j.bbrc.2018.01.161 URL |
[71] |
Casey E, Sedlak M, Ho NWY, et al. Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2010, 10(4): 385-393.
doi: 10.1111/fyr.2010.10.issue-4 URL |
[72] |
Dietrich K, Dumont MJ, Schwinghamer T, et al. Model study to assess softwood hemicellulose hydrolysates as the carbon source for PHB production in Paraburkholderia sacchari IPT 101[J]. Biomacromolecules, 2018, 19(1): 188-200.
doi: 10.1021/acs.biomac.7b01446 pmid: 29182307 |
[73] |
Hernández-Cortés G, Valle-Rodríguez JO, Herrera-López EJ, et al. Improvement on the productivity of continuous tequila fermentation by Saccharomyces cerevisiae of Agave tequilana juice with supplementation of yeast extract and aeration[J]. AMB Express, 2016, 6(1): 47.
doi: 10.1186/s13568-016-0218-8 pmid: 27447701 |
[1] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[2] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[3] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[4] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[5] | 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. |
[6] | 胡芳, 董旭, 史长伟, 吴学栋. 超声波强化木质纤维素酶解的研究进展[J]. 生物技术通报, 2021, 37(10): 234-244. |
[7] | 崔新刚, 孙雅欣, 崔晓静, 邓雁文, 孙恩浩, 王俊芳, 崔红晶. 酿酒酵母TAP42基因在细胞壁应激反应中的作用[J]. 生物技术通报, 2021, 37(10): 57-62. |
[8] | 顾翰琦, 邵玲智, 刘冉, 刘晓光, 李玲, 刘倩, 李洁, 张雅丽. 酿酒酵母酚类抑制物耐受性脂质组学研究[J]. 生物技术通报, 2021, 37(1): 15-23. |
[9] | 吴宇, 王金华, 赵筱. GLN1基因过表达对提高酿酒酵母糠醛耐受性的研究[J]. 生物技术通报, 2020, 36(8): 69-78. |
[10] | 顾翰琦, 刘冉, 邵玲智, 徐岩岩, 王东岩, 张冬梅, 李洁. 酿酒酵母对酚类抑制物耐受性研究[J]. 生物技术通报, 2020, 36(6): 136-142. |
[11] | 陈永灿, 张建志, 司同. 酿酒酵母中基于CRISPR/dCás9的基因转录调控工具的开发与应用[J]. 生物技术通报, 2020, 36(4): 1-12. |
[12] | 李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207. |
[13] | 曹文妍, 王心凝, 沈煜, 李在禄, 鲍晓明. 酿酒酵母关联多药耐受性转录因子Yrr1p的研究进展[J]. 生物技术通报, 2020, 36(11): 148-154. |
[14] | 陈和锋, 朱晁谊, 李爽. 产瓦伦西亚烯酿酒酵母的表达载体适配及发酵碳氮源优化[J]. 生物技术通报, 2020, 36(1): 209-219. |
[15] | 段训威, 肖桂清, 王礼兴, 吴文林, 戴聪杰, 董乐. 酶解条浒苔蛋白制备抗肺癌活性多肽[J]. 生物技术通报, 2019, 35(8): 246-252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||