生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 222-230.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0611
周会汶1(), 吴兰花1, 韩德鹏2, 郑伟2, 余跑兰2, 吴杨1(), 肖小军2()
收稿日期:
2023-06-28
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
肖小军,男,硕士,高级农艺师,研究方向:作物遗传育种及抗逆性分子机理;E-mail: xiao850908@163.com;作者简介:
周会汶,男,博士,讲师,研究方向:作物遗传育种及抗逆性分子机理;E-mail: zhouhuiwen0320@126.com;吴兰花为本文共同第一作者
基金资助:
ZHOU Hui-wen1(), WU Lan-hua1, HAN De-peng2, ZHENG Wei2, YU Pao-lan2, WU Yang1(), XIAO Xiao-jun2()
Received:
2023-06-28
Published:
2024-01-26
Online:
2024-02-06
摘要:
【目的】挖掘与种子硫苷含量显著关联的SNP位点及候选基因,有助于油菜品质改良和培育高品质油菜品种。【方法】以300份甘蓝型油菜自交系为材料,考察了江西农业大学试验地和江西省红壤及种质资源研究所试验地2种环境下种子硫苷含量,采用前期开发的201 817个SNP(single nucleotide polymorphism,SNP)标记对油菜种子硫苷含量进行全基因组关联分析(genome-wide association study,GWAS),搜寻显著位点两侧100 kb范围内的候选基因并进行功能注释。【结果】300份甘蓝型油菜种子硫苷含量在两地均表现出表型差异;基于一般线性模型和混合线性模型检测到209个硫苷含量显著关联SNP位点,其中两地两种方法重复检测到41个SNP位点,分别在A05(1个)、A09(36个)、C09(4个)3条染色体上。候选基因功能注释结果显示,有8个候选基因参与硫苷生物合成途径(GO:0019761),包含调控硫苷合成相关基因MYB28(BnaC09g05290D、BnaC09g05300D)、MYB34(BnaA09g05480D)和编码硫苷转运蛋白2相关基因(BnaA09g06180D、BnaA09g06190D)。【结论】通过两种方法在两地检测到多个与硫苷显著关联的SNP位点,并在显著性位点附近挖掘到相关候选基因,研究结果有助于解析甘蓝型油菜硫苷含量的遗传变异,为低硫苷含量油菜新品种的遗传改良提供基础。
周会汶, 吴兰花, 韩德鹏, 郑伟, 余跑兰, 吴杨, 肖小军. 甘蓝型油菜种子硫苷含量全基因组关联分析[J]. 生物技术通报, 2024, 40(1): 222-230.
ZHOU Hui-wen, WU Lan-hua, HAN De-peng, ZHENG Wei, YU Pao-lan, WU Yang, XIAO Xiao-jun. Genome-wide Association Study of Seed Glucosinolate Content in Brassica napus[J]. Biotechnology Bulletin, 2024, 40(1): 222-230.
性状 Trait | 环境 Environment | 均值 Mean | 标准差 SD | 最小值 Min | 最大值 Max | 变异系数 CV/% |
---|---|---|---|---|---|---|
硫苷含量 | JXAU | 29.789 | 18.923 | 1.575 | 70.180 | 63.52 |
Glucosinolate content/(μmol·g-1) | JXIRS | 22.785 | 18.581 | 0.170 | 71.555 | 81.55 |
表1 油菜籽硫苷含量统计分析
Table 1 Statistical analysis of seed glucosinolate content in rapeseed
性状 Trait | 环境 Environment | 均值 Mean | 标准差 SD | 最小值 Min | 最大值 Max | 变异系数 CV/% |
---|---|---|---|---|---|---|
硫苷含量 | JXAU | 29.789 | 18.923 | 1.575 | 70.180 | 63.52 |
Glucosinolate content/(μmol·g-1) | JXIRS | 22.785 | 18.581 | 0.170 | 71.555 | 81.55 |
变异来源 Source of variation | DF | 方差 Variance |
---|---|---|
区组 Block | 1 | 166.55 |
环境 Environment(E) | 1 | 14716.38** |
基因型 Genotype(G) | 299 | 1256.55** |
基因×环境 G×E | 299 | 150.11** |
误差 Error | 599 | 101.23 |
表2 两地环境下油菜种子硫苷含量的方差分析
Table 2 Variance analysis of seed glucosinolate contents of rapeseed in two environments
变异来源 Source of variation | DF | 方差 Variance |
---|---|---|
区组 Block | 1 | 166.55 |
环境 Environment(E) | 1 | 14716.38** |
基因型 Genotype(G) | 299 | 1256.55** |
基因×环境 G×E | 299 | 150.11** |
误差 Error | 599 | 101.23 |
序号 Index | SNPs | QTLs | 染色体 Chromosome | 位置 Position | GLM | MLM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JXAU | JXRIS | JXAU | JXRIS | |||||||||||
P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | |||||||
1 | Bna_A05_11509410 | qSGC.A05.1 | A05 | 11509410 | 3.77E-07 | 4.96 | 1.11E-06 | 4.41 | 1.25E-06 | 5.72 | 2.63E-06 | 5.04 | ||
2 | Bna_A09_1752479 | qSGC.A09.1 | A09 | 1752479 | 7.37E-09 | 10.10 | 1.74E-08 | 10.46 | 2.77E-07 | 11.10 | 1.32E-06 | 11.95 | ||
3 | Bna_A09_2450831 | qSGC.A09.2 | A09 | 2450831 | 3.27E-07 | 6.13 | 5.39E-08 | 6.93 | 2.53E-06 | 6.89 | 9.11E-07 | 7.79 | ||
Bna_A09_2450841 | qSGC.A09.2 | A09 | 2450841 | 1.68E-07 | 6.38 | 8.21E-08 | 6.77 | 1.50E-06 | 7.19 | 1.25E-06 | 7.60 | |||
Bna_A09_2452752 | qSGC.A09.2 | A09 | 2452752 | 4.71E-09 | 7.23 | 9.60E-11 | 8.25 | 9.66E-08 | 7.91 | 7.71E-09 | 9.59 | |||
Bna_A09_2464119 | qSGC.A09.2 | A09 | 2464119 | 2.03E-10 | 9.41 | 1.12E-10 | 9.05 | 1.57E-08 | 10.33 | 2.56E-08 | 10.53 | |||
Bna_A09_2539106 | qSGC.A09.2 | A09 | 2539106 | 3.87E-11 | 9.52 | 8.30E-15 | 11.35 | 1.64E-09 | 10.76 | 5.67E-12 | 13.82 | |||
Bna_A09_2539185 | qSGC.A09.2 | A09 | 2539185 | 1.45E-11 | 9.38 | 3.22E-14 | 10.93 | 9.58E-10 | 10.46 | 1.59E-11 | 13.23 | |||
Bna_A09_2554018 | qSGC.A09.2 | A09 | 2554018 | 8.55E-13 | 10.57 | 1.20E-15 | 11.61 | 1.89E-10 | 11.90 | 3.47E-12 | 14.15 | |||
Bna_A09_2554036 | qSGC.A09.2 | A09 | 2554036 | 7.62E-13 | 10.64 | 1.44E-15 | 11.62 | 1.67E-10 | 11.97 | 3.62E-12 | 14.14 | |||
Bna_A09_2554311 | qSGC.A09.2 | A09 | 2554311 | 9.60E-12 | 9.17 | 1.06E-16 | 12.17 | 1.20E-09 | 10.19 | 1.01E-12 | 14.78 | |||
Bna_A09_2554365 | qSGC.A09.2 | A09 | 2554365 | 5.74E-12 | 9.34 | 8.53E-17 | 12.24 | 8.35E-10 | 10.39 | 8.65E-13 | 14.87 | |||
Bna_A09_2554384 | qSGC.A09.2 | A09 | 2554384 | 3.63E-12 | 9.49 | 1.82E-17 | 12.68 | 5.97E-10 | 10.57 | 3.19E-13 | 15.47 | |||
Bna_A09_2554417 | qSGC.A09.2 | A09 | 2554417 | 3.98E-12 | 9.46 | 1.35E-17 | 12.76 | 6.34E-10 | 10.53 | 2.62E-13 | 15.58 | |||
Bna_A09_2628903 | qSGC.A09.2 | A09 | 2628903 | 7.16E-07 | 6.11 | 1.44E-07 | 6.51 | 4.32E-06 | 6.85 | 8.45E-07 | 7.31 | |||
Bna_A09_2632578 | qSGC.A09.2 | A09 | 2632578 | 2.80E-07 | 5.74 | 2.84E-08 | 6.14 | 1.72E-06 | 6.42 | 3.95E-07 | 7.50 | |||
4 | Bna_A09_2943582 | qSGC.A09.3 | A09 | 2943582 | 2.36E-07 | 6.67 | 8.68E-09 | 8.03 | 7.87E-07 | 7.48 | 3.74E-08 | 9.65 | ||
Bna_A09_2949845 | qSGC.A09.3 | A09 | 2949845 | 1.11E-09 | 8.96 | 6.02E-10 | 8.42 | 3.45E-08 | 9.93 | 2.80E-08 | 10.38 | |||
Bnaa_A09_2950147 | qSGC.A09.3 | A09 | 2950147 | 8.13E-09 | 8.14 | 1.10E-09 | 8.20 | 1.06E-07 | 8.97 | 3.37E-08 | 10.05 | |||
Bna_A09_3024563 | qSGC.A09.3 | A09 | 3024563 | 6.19E-07 | 5.39 | 1.81E-07 | 5.95 | 2.45E-06 | 6.20 | 5.18E-07 | 7.27 | |||
Bna_A09_3056417 | qSGC.A09.3 | A09 | 3056417 | 1.18E-07 | 6.36 | 4.37E-10 | 8.04 | 5.54E-07 | 7.27 | 7.10E-09 | 8.98 | |||
Bna_A09_3056427 | qSGC.A09.3 | A09 | 3056427 | 6.87E-08 | 6.56 | 3.42E-10 | 8.10 | 3.60E-07 | 7.48 | 5.98E-09 | 9.05 | |||
Bna_A09_3065511 | qSGC.A09.3 | A09 | 3065511 | 5.47E-08 | 7.38 | 2.63E-10 | 8.55 | 3.89E-07 | 8.40 | 1.07E-08 | 10.68 | |||
Bna_A09_3065837 | qSGC.A09.3 | A09 | 3065837 | 1.03E-07 | 7.10 | 1.38E-09 | 7.99 | 7.54E-07 | 8.02 | 3.74E-08 | 9.91 | |||
Bna_A09_3066370 | qSGC.A09.3 | A09 | 3066370 | 3.85E-11 | 10.15 | 8.56E-12 | 10.12 | 1.63E-09 | 11.14 | 3.31E-09 | 11.91 | |||
Bna_A09_3066514 | qSGC.A09.3 | A09 | 3066514 | 8.31E-09 | 7.71 | 1.42E-07 | 6.72 | 1.09E-07 | 8.50 | 2.59E-06 | 7.54 | |||
Bna_A09_3095940 | qSGC.A09.3 | A09 | 3095940 | 8.30E-08 | 7.00 | 8.69E-12 | 10.05 | 5.25E-07 | 7.86 | 3.76E-10 | 11.24 | |||
Bna_A09_3095954 | qSGC.A09.3 | A09 | 3095954 | 2.51E-07 | 6.59 | 1.15E-11 | 9.96 | 1.06E-06 | 7.39 | 4.63E-10 | 11.12 | |||
Bna_A09_3095955 | qSGC.A09.3 | A09 | 3095955 | 8.18E-08 | 7.04 | 1.20E-11 | 9.97 | 4.94E-07 | 7.91 | 4.52E-10 | 11.14 | |||
Bna_A09_3096314 | qSGC.A09.3 | A09 | 3096314 | 7.92E-07 | 5.57 | 2.70E-07 | 5.69 | 3.50E-06 | 6.32 | 1.27E-06 | 6.46 | |||
Bna_A09_3096326 | qSGC.A09.3 | A09 | 3096326 | 2.64E-09 | 7.62 | 1.56E-11 | 8.46 | 3.74E-08 | 8.69 | 1.33E-09 | 10.39 | |||
5 | Bna_A09_3404360 | qSGC.A09.4 | A09 | 3404360 | 4.08E-07 | 5.54 | 7.10E-09 | 6.55 | 3.02E-06 | 6.17 | 1.90E-07 | 8.05 | ||
Bna_A09_3404402 | qSGC.A09.4 | A09 | 3404402 | 4.76E-07 | 5.49 | 7.07E-09 | 6.56 | 3.64E-06 | 6.10 | 1.98E-07 | 8.04 | |||
Bna_A09_3404405 | qSGC.A09.4 | A09 | 3404405 | 3.76E-07 | 5.53 | 6.18E-09 | 6.56 | 3.02E-06 | 6.16 | 1.82E-07 | 8.06 | |||
6 | Bna_A09_4102404 | qSGC.A09.5 | A09 | 4102404 | 5.66E-08 | 6.06 | 3.55E-09 | 7.11 | 3.16E-07 | 7.00 | 7.48E-08 | 8.09 | ||
7 | Bna_A09_4616889 | qSGC.A09.6 | A09 | 4616889 | 8.62E-07 | 5.55 | 5.34E-08 | 5.95 | 4.48E-06 | 6.43 | 9.41E-07 | 7.30 | ||
Bna_A09_4616895 | qSGC.A09.6 | A09 | 4616895 | 7.54E-07 | 5.43 | 3.79E-08 | 6.07 | 3.34E-06 | 6.18 | 7.82E-07 | 7.41 | |||
8 | Bna_C09_2497414 | qSGC.C09.1 | C09 | 2497414 | 3.90E-07 | 8.12 | 2.35E-07 | 7.93 | 1.36E-06 | 8.89 | 1.14E-06 | 8.68 | ||
9 | Bna_C09_3123158 | qSGC.C09.2 | C09 | 3123158 | 4.80E-08 | 8.34 | 1.61E-07 | 8.72 | 2.20E-06 | 9.11 | 4.01E-06 | 9.79 | ||
Bna_C09_3123358 | qSGC.C09.2 | C09 | 3123358 | 1.05E-08 | 8.85 | 1.13E-09 | 9.68 | 6.58E-07 | 9.82 | 5.95E-08 | 11.60 | |||
10 | Bna_C09_5569010 | qSGC.C09.3 | C09 | 5569010 | 2.84E-07 | 6.57 | 5.82E-07 | 5.93 | 6.77E-07 | 7.24 | 1.41E-06 | 7.02 |
表3 两地重复检测到显著关联SNPs
Table 3 SNP significantly associated with SGC under JXAU and JXRIS
序号 Index | SNPs | QTLs | 染色体 Chromosome | 位置 Position | GLM | MLM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
JXAU | JXRIS | JXAU | JXRIS | |||||||||||
P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | P值 P value | 贡献率 R2 /% | |||||||
1 | Bna_A05_11509410 | qSGC.A05.1 | A05 | 11509410 | 3.77E-07 | 4.96 | 1.11E-06 | 4.41 | 1.25E-06 | 5.72 | 2.63E-06 | 5.04 | ||
2 | Bna_A09_1752479 | qSGC.A09.1 | A09 | 1752479 | 7.37E-09 | 10.10 | 1.74E-08 | 10.46 | 2.77E-07 | 11.10 | 1.32E-06 | 11.95 | ||
3 | Bna_A09_2450831 | qSGC.A09.2 | A09 | 2450831 | 3.27E-07 | 6.13 | 5.39E-08 | 6.93 | 2.53E-06 | 6.89 | 9.11E-07 | 7.79 | ||
Bna_A09_2450841 | qSGC.A09.2 | A09 | 2450841 | 1.68E-07 | 6.38 | 8.21E-08 | 6.77 | 1.50E-06 | 7.19 | 1.25E-06 | 7.60 | |||
Bna_A09_2452752 | qSGC.A09.2 | A09 | 2452752 | 4.71E-09 | 7.23 | 9.60E-11 | 8.25 | 9.66E-08 | 7.91 | 7.71E-09 | 9.59 | |||
Bna_A09_2464119 | qSGC.A09.2 | A09 | 2464119 | 2.03E-10 | 9.41 | 1.12E-10 | 9.05 | 1.57E-08 | 10.33 | 2.56E-08 | 10.53 | |||
Bna_A09_2539106 | qSGC.A09.2 | A09 | 2539106 | 3.87E-11 | 9.52 | 8.30E-15 | 11.35 | 1.64E-09 | 10.76 | 5.67E-12 | 13.82 | |||
Bna_A09_2539185 | qSGC.A09.2 | A09 | 2539185 | 1.45E-11 | 9.38 | 3.22E-14 | 10.93 | 9.58E-10 | 10.46 | 1.59E-11 | 13.23 | |||
Bna_A09_2554018 | qSGC.A09.2 | A09 | 2554018 | 8.55E-13 | 10.57 | 1.20E-15 | 11.61 | 1.89E-10 | 11.90 | 3.47E-12 | 14.15 | |||
Bna_A09_2554036 | qSGC.A09.2 | A09 | 2554036 | 7.62E-13 | 10.64 | 1.44E-15 | 11.62 | 1.67E-10 | 11.97 | 3.62E-12 | 14.14 | |||
Bna_A09_2554311 | qSGC.A09.2 | A09 | 2554311 | 9.60E-12 | 9.17 | 1.06E-16 | 12.17 | 1.20E-09 | 10.19 | 1.01E-12 | 14.78 | |||
Bna_A09_2554365 | qSGC.A09.2 | A09 | 2554365 | 5.74E-12 | 9.34 | 8.53E-17 | 12.24 | 8.35E-10 | 10.39 | 8.65E-13 | 14.87 | |||
Bna_A09_2554384 | qSGC.A09.2 | A09 | 2554384 | 3.63E-12 | 9.49 | 1.82E-17 | 12.68 | 5.97E-10 | 10.57 | 3.19E-13 | 15.47 | |||
Bna_A09_2554417 | qSGC.A09.2 | A09 | 2554417 | 3.98E-12 | 9.46 | 1.35E-17 | 12.76 | 6.34E-10 | 10.53 | 2.62E-13 | 15.58 | |||
Bna_A09_2628903 | qSGC.A09.2 | A09 | 2628903 | 7.16E-07 | 6.11 | 1.44E-07 | 6.51 | 4.32E-06 | 6.85 | 8.45E-07 | 7.31 | |||
Bna_A09_2632578 | qSGC.A09.2 | A09 | 2632578 | 2.80E-07 | 5.74 | 2.84E-08 | 6.14 | 1.72E-06 | 6.42 | 3.95E-07 | 7.50 | |||
4 | Bna_A09_2943582 | qSGC.A09.3 | A09 | 2943582 | 2.36E-07 | 6.67 | 8.68E-09 | 8.03 | 7.87E-07 | 7.48 | 3.74E-08 | 9.65 | ||
Bna_A09_2949845 | qSGC.A09.3 | A09 | 2949845 | 1.11E-09 | 8.96 | 6.02E-10 | 8.42 | 3.45E-08 | 9.93 | 2.80E-08 | 10.38 | |||
Bnaa_A09_2950147 | qSGC.A09.3 | A09 | 2950147 | 8.13E-09 | 8.14 | 1.10E-09 | 8.20 | 1.06E-07 | 8.97 | 3.37E-08 | 10.05 | |||
Bna_A09_3024563 | qSGC.A09.3 | A09 | 3024563 | 6.19E-07 | 5.39 | 1.81E-07 | 5.95 | 2.45E-06 | 6.20 | 5.18E-07 | 7.27 | |||
Bna_A09_3056417 | qSGC.A09.3 | A09 | 3056417 | 1.18E-07 | 6.36 | 4.37E-10 | 8.04 | 5.54E-07 | 7.27 | 7.10E-09 | 8.98 | |||
Bna_A09_3056427 | qSGC.A09.3 | A09 | 3056427 | 6.87E-08 | 6.56 | 3.42E-10 | 8.10 | 3.60E-07 | 7.48 | 5.98E-09 | 9.05 | |||
Bna_A09_3065511 | qSGC.A09.3 | A09 | 3065511 | 5.47E-08 | 7.38 | 2.63E-10 | 8.55 | 3.89E-07 | 8.40 | 1.07E-08 | 10.68 | |||
Bna_A09_3065837 | qSGC.A09.3 | A09 | 3065837 | 1.03E-07 | 7.10 | 1.38E-09 | 7.99 | 7.54E-07 | 8.02 | 3.74E-08 | 9.91 | |||
Bna_A09_3066370 | qSGC.A09.3 | A09 | 3066370 | 3.85E-11 | 10.15 | 8.56E-12 | 10.12 | 1.63E-09 | 11.14 | 3.31E-09 | 11.91 | |||
Bna_A09_3066514 | qSGC.A09.3 | A09 | 3066514 | 8.31E-09 | 7.71 | 1.42E-07 | 6.72 | 1.09E-07 | 8.50 | 2.59E-06 | 7.54 | |||
Bna_A09_3095940 | qSGC.A09.3 | A09 | 3095940 | 8.30E-08 | 7.00 | 8.69E-12 | 10.05 | 5.25E-07 | 7.86 | 3.76E-10 | 11.24 | |||
Bna_A09_3095954 | qSGC.A09.3 | A09 | 3095954 | 2.51E-07 | 6.59 | 1.15E-11 | 9.96 | 1.06E-06 | 7.39 | 4.63E-10 | 11.12 | |||
Bna_A09_3095955 | qSGC.A09.3 | A09 | 3095955 | 8.18E-08 | 7.04 | 1.20E-11 | 9.97 | 4.94E-07 | 7.91 | 4.52E-10 | 11.14 | |||
Bna_A09_3096314 | qSGC.A09.3 | A09 | 3096314 | 7.92E-07 | 5.57 | 2.70E-07 | 5.69 | 3.50E-06 | 6.32 | 1.27E-06 | 6.46 | |||
Bna_A09_3096326 | qSGC.A09.3 | A09 | 3096326 | 2.64E-09 | 7.62 | 1.56E-11 | 8.46 | 3.74E-08 | 8.69 | 1.33E-09 | 10.39 | |||
5 | Bna_A09_3404360 | qSGC.A09.4 | A09 | 3404360 | 4.08E-07 | 5.54 | 7.10E-09 | 6.55 | 3.02E-06 | 6.17 | 1.90E-07 | 8.05 | ||
Bna_A09_3404402 | qSGC.A09.4 | A09 | 3404402 | 4.76E-07 | 5.49 | 7.07E-09 | 6.56 | 3.64E-06 | 6.10 | 1.98E-07 | 8.04 | |||
Bna_A09_3404405 | qSGC.A09.4 | A09 | 3404405 | 3.76E-07 | 5.53 | 6.18E-09 | 6.56 | 3.02E-06 | 6.16 | 1.82E-07 | 8.06 | |||
6 | Bna_A09_4102404 | qSGC.A09.5 | A09 | 4102404 | 5.66E-08 | 6.06 | 3.55E-09 | 7.11 | 3.16E-07 | 7.00 | 7.48E-08 | 8.09 | ||
7 | Bna_A09_4616889 | qSGC.A09.6 | A09 | 4616889 | 8.62E-07 | 5.55 | 5.34E-08 | 5.95 | 4.48E-06 | 6.43 | 9.41E-07 | 7.30 | ||
Bna_A09_4616895 | qSGC.A09.6 | A09 | 4616895 | 7.54E-07 | 5.43 | 3.79E-08 | 6.07 | 3.34E-06 | 6.18 | 7.82E-07 | 7.41 | |||
8 | Bna_C09_2497414 | qSGC.C09.1 | C09 | 2497414 | 3.90E-07 | 8.12 | 2.35E-07 | 7.93 | 1.36E-06 | 8.89 | 1.14E-06 | 8.68 | ||
9 | Bna_C09_3123158 | qSGC.C09.2 | C09 | 3123158 | 4.80E-08 | 8.34 | 1.61E-07 | 8.72 | 2.20E-06 | 9.11 | 4.01E-06 | 9.79 | ||
Bna_C09_3123358 | qSGC.C09.2 | C09 | 3123358 | 1.05E-08 | 8.85 | 1.13E-09 | 9.68 | 6.58E-07 | 9.82 | 5.95E-08 | 11.60 | |||
10 | Bna_C09_5569010 | qSGC.C09.3 | C09 | 5569010 | 2.84E-07 | 6.57 | 5.82E-07 | 5.93 | 6.77E-07 | 7.24 | 1.41E-06 | 7.02 |
基因ID Gene ID | SNP | QTLs | 功能注释Annotation | 拟南芥同源基因Arabidopsis homo gene |
---|---|---|---|---|
BnaA05g16830D | Bna_A05_11509410 | qSGC.A05.1 | ATP sulfurylase 1 | At3G22890 |
BnaA09g05480D | Bna_A09_2632578 | qSGC.A09.2 | Transcription factor MYB34 | At5G60890 |
BnaA09g06180D | Bna_A09_3056417 | qSGC.A09.3 | Protein NRT1/ PTR FAMILY | At5G62680 |
BnaA09g06190D | Bna_A09_3056417 | qSGC.A09.3 | Protein NRT1/ PTR FAMILY | At5G62680 |
BnaA09g06230D | Bna_A09_3056417 | qSGC.A09.3 | 1-deoxy-D-xylulose 5-phosphate reductoisomerase | At5G62790 |
BnaC09g05290D | Bna_C09_3123358 | qSGC.C09.2 | Transcription factor MYB28 | At5G61420 |
BnaC09g05300D | Bna_C09_3123358 | qSGC.C09.2 | Transcription factor MYB28 | At5G61420 |
BnaC09g08710D | Bna_C09_5569010 | qSGC.C09.3 | Adenylyl-sulfate kinase 1 | At2G14750 |
表4 硫苷生物合成途径(GO:0019761)注释的候选基因
Table 4 Candidate genes annotated with glucosinolate biosynthetic pathway(GO:0019761)
基因ID Gene ID | SNP | QTLs | 功能注释Annotation | 拟南芥同源基因Arabidopsis homo gene |
---|---|---|---|---|
BnaA05g16830D | Bna_A05_11509410 | qSGC.A05.1 | ATP sulfurylase 1 | At3G22890 |
BnaA09g05480D | Bna_A09_2632578 | qSGC.A09.2 | Transcription factor MYB34 | At5G60890 |
BnaA09g06180D | Bna_A09_3056417 | qSGC.A09.3 | Protein NRT1/ PTR FAMILY | At5G62680 |
BnaA09g06190D | Bna_A09_3056417 | qSGC.A09.3 | Protein NRT1/ PTR FAMILY | At5G62680 |
BnaA09g06230D | Bna_A09_3056417 | qSGC.A09.3 | 1-deoxy-D-xylulose 5-phosphate reductoisomerase | At5G62790 |
BnaC09g05290D | Bna_C09_3123358 | qSGC.C09.2 | Transcription factor MYB28 | At5G61420 |
BnaC09g05300D | Bna_C09_3123358 | qSGC.C09.2 | Transcription factor MYB28 | At5G61420 |
BnaC09g08710D | Bna_C09_5569010 | qSGC.C09.3 | Adenylyl-sulfate kinase 1 | At2G14750 |
[1] | 何微, 李俊, 王晓梅, 等. 全球油菜产业现状与我国油菜产业问题、对策[J]. 中国油脂, 2022, 47(2): 1-7. |
He W, Li J, Wang XM, et al. Current status of global rapeseed industry and problems, countermeasures of rapeseed industry in China[J]. China Oils Fats, 2022, 47(2): 1-7. | |
[2] |
刘成, 冯中朝, 肖唐华, 等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报, 2019, 41(4): 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
Liu C, Feng ZC, Xiao TH, et al. Development, potential and adaptation of Chinese rapeseed industry[J]. Chin J Oil Crop Sci, 2019, 41(4): 485-489.
doi: 10.7505/j.issn.1007-9084.2019.04.001 |
|
[3] |
Tripathi MK, Mishra AS. Glucosinolates in animal nutrition: a review[J]. Anim Feed Sci Technol, 2007, 132(1-2): 1-27.
doi: 10.1016/j.anifeedsci.2006.03.003 URL |
[4] | Bisht NC, Augustine R. Development of Brassica oilseed crops with low antinutritional glucosinolates and rich in anticancer glucosinolates[M]// Nutritional Quality Improvement in Plants. Cham: Springer, 2019: 271-287. |
[5] | 谢艳平, 何泽威, 贺继奎, 等. 分子标记辅助选育高饲用价值低硫苷油菜新品种[J]. 分子植物育种, 2022, 20(21): 7132-7142. |
Xie YP, He ZW, He JK, et al. Development of high-feeding value and low-glucosinolate content rapeseed cultivar by marker-assist selection[J]. Mol Plant Breed, 2022, 20(21): 7132-7142. | |
[6] |
Kittipol V, He ZS, Wang LH, et al. Genetic architecture of glucosinolate variation in Brassica napus[J]. J Plant Physiol, 2019, 240: 152988.
doi: 10.1016/j.jplph.2019.06.001 URL |
[7] |
Halkier BA, Gershenzon J. Biology and biochemistry of glucosinolates[J]. Annu Rev Plant Biol, 2006, 57: 303-333.
pmid: 16669764 |
[8] | 雷建军, 陈长明, 陈国菊, 等. 硫苷及其生物合成分子生物学机理研究进展[J]. 华南农业大学学报, 2019, 40(5): 59-70. |
Lei JJ, Chen CM, Chen GJ, et al. Progress in glucosinolates and its molecular mechanism of biosynthesis[J]. J South China Agric Univ, 2019, 40(5): 59-70. | |
[9] |
杜海, 冉凤, 刘静, 等. 拟南芥硫苷生物合成相关基因的组织和胁迫诱导表达谱的全基因组分析[J]. 中国农业科学, 2016, 49(15): 2879-2897.
doi: 10.3864/j.issn.0578-1752.2016.15.003 |
Du H, Ran F, Liu J, et al. Genome-wide expression analysis of glucosinolate biosynthetic genes in Arabidopsis across diverse tissues and stresses induction[J]. Sci Agric Sin, 2016, 49(15): 2879-2897. | |
[10] |
Prieto MA, López CJ, Simal-Gandara J. Glucosinolates: molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects[J]. Adv Food Nutr Res, 2019, 90: 305-350.
doi: S1043-4526(19)30023-3 pmid: 31445598 |
[11] |
Feng J, Long Y, Shi L, et al. Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus[J]. New Phytol, 2012, 193(1): 96-108.
doi: 10.1111/j.1469-8137.2011.03890.x pmid: 21973035 |
[12] | 刘水燕, 卜海东, 曲存民, 等. 甘蓝型油菜硫苷主要组份的QTL定位分析[J]. 西南大学学报: 自然科学版, 2014, 36(9): 29-36. |
Liu SY, Bu HD, Qu CM, et al. Localization of QTLs for glucosinolate profiles using recombinant inbred lines in Brassica napus L[J]. J Southwest Univ Nat Sci Ed, 2014, 36(9): 29-36. | |
[13] | 荐红举, 魏丽娟, 李加纳, 等. 利用SNP高密度遗传连锁图谱定位甘蓝型油菜种子硫苷含量的QTL(英文)[J]. 作物学报, 2014, 40(8): 1386-1391. |
Jian HJ, Wei LJ, Li JN, et al. Mapping quantitative traits loci for seed glucosinolate content in Brassica napus using high-density SNP map[J]. Acta Agron Sin, 2014, 40(8): 1386-1391.
doi: 10.3724/SP.J.1006.2014.01386 URL |
|
[14] |
Huang XH, Han B. Natural variations and genome-wide association studies in crop plants[J]. Annu Rev Plant Biol, 2014, 65: 531-551.
doi: 10.1146/annurev-arplant-050213-035715 pmid: 24274033 |
[15] |
Khatab AA, Li JG, Hu LH, et al. Global identification of quantitative trait loci and candidate genes for cold stress and chilling acclimation in rice through GWAS and RNA-seq[J]. Planta, 2022, 256(4): 82.
doi: 10.1007/s00425-022-03995-z pmid: 36103054 |
[16] |
Huang YC, Wang HH, Zhu YD, et al. THP9 enhances seed protein content and nitrogen-use efficiency in maize[J]. Nature, 2022, 612(7939): 292-300.
doi: 10.1038/s41586-022-05441-2 |
[17] |
Duan ZB, Zhang M, Zhang ZF, et al. Natural allelic variation of GmST05 controlling seed size and quality in soybean[J]. Plant Biotechnol J, 2022, 20(9): 1807-1818.
doi: 10.1111/pbi.13865 pmid: 35642379 |
[18] |
Zhou HW, Xiao XJ, Asjad A, et al. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed(Brassica napus L.)[J]. BMC Plant Biol, 2022, 22(1): 130.
doi: 10.1186/s12870-022-03508-w |
[19] |
Wei DY, Cui YX, Mei JQ, et al. Genome-wide identification of loci affecting seed glucosinolate contents in Brassica napus L[J]. J Integr Plant Biol, 2019, 61(5): 611-623.
doi: 10.1111/jipb.v61.5 URL |
[20] | 刘蔚, 姚敏, 康郁, 等. GWAS结合共表达网络分析挖掘影响油菜种子硫苷积累的作用位点[J]. 农业生物技术学报, 2019, 27(10): 1729-1741. |
Liu W, Yao M, Kang Y, et al. GWAS and coexpression network combination uncovers effect loci in the accumulation of glucosinolates content in Brassica napus[J]. J Agric Biotechnol, 2019, 27(10): 1729-1741. | |
[21] |
Tang YS, Zhang GR, Jiang XY, et al. Genome-wide association study of glucosinolate metabolites(mGWAS)in Brassica napus L[J]. Plants, 2023, 12(3): 639.
doi: 10.3390/plants12030639 URL |
[22] |
肖小军, 陈明, 韩德鹏, 等. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0824 |
Xiao XJ, Chen M, Han DP, et al. Genome wide association analysis of thousand seed weight in Brassica napus L[J]. Biotechnol Bull, 2023, 39(3): 143-151.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0824 |
|
[23] |
Zhou QH, Han DP, Mason AS, et al. Earliness traits in rapeseed(Brassica napus): SNP loci and candidate genes identified by genome-wide association analysis[J]. DNA Res, 2018, 25(3): 229-244.
doi: 10.1093/dnares/dsx052 URL |
[24] |
Bradbury PJ, Zhang ZW, Kroon DE, et al. TASSEL: software for association mapping of complex traits in diverse samples[J]. Bioinformatics, 2007, 23(19): 2633-2635.
doi: 10.1093/bioinformatics/btm308 pmid: 17586829 |
[25] |
Ginestet C. ggplot2: elegant graphics for data analysis[J]. J R Stat Soc Ser A Stat Soc, 2011, 174(1): 245-246.
doi: 10.1111/j.1467-985X.2010.00676_9.x URL |
[26] |
Turner SD. Qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots[J]. J Open Source Softw, 2018, 3(25): 731.
doi: 10.21105/joss URL |
[27] |
Ishida M, Hara M, Fukino N, et al. Glucosinolate metabolism, functionality and breeding for the improvement of Brassicaceae vegetables[J]. Breed Sci, 2014, 64(1): 48-59.
doi: 10.1270/jsbbs.64.48 URL |
[28] |
Liu Y, Zhou XM, Yan M, et al. Fine mapping and candidate gene analysis of a seed glucosinolate content QTL, qGSL-C2, in rapeseed(Brassica napus L.)[J]. Theor Appl Genet, 2020, 133(2): 479-490.
doi: 10.1007/s00122-019-03479-x |
[29] |
Tan ZD, Xie ZQ, Dai LH, et al. Genome- and transcriptome-wide association studies reveal the genetic basis and the breeding history of seed glucosinolate content in Brassica napus[J]. Plant Biotechnol J, 2022, 20(1): 211-225.
doi: 10.1111/pbi.v20.1 URL |
[30] |
Liu S, Huang HB, Yi XQ, et al. Dissection of genetic architecture for glucosinolate accumulations in leaves and seeds of Brassica napus by genome-wide association study[J]. Plant Biotechnol J, 2020, 18(6): 1472-1484.
doi: 10.1111/pbi.v18.6 URL |
[31] | 魏大勇, 崔艺馨, 熊清, 等. 用全基因组关联作图和共表达网络分析鉴定油菜种子硫苷含量的候选基因[J]. 作物学报, 2018, 44(5): 629-641. |
Wei DY, Cui YX, Xiong Q, et al. Identification of candidate genes for seed glucosinolate content of rapeseed by using genome-wide association mapping and co-expression networks analysis[J]. Acta Agron Sin, 2018, 44(5): 629-641.
doi: 10.3724/SP.J.1006.2018.00629 URL |
|
[32] |
Qu CM, Li SM, Duan XJ, et al. Identification of candidate genes for seed glucosinolate content using association mapping in Brassica napus L[J]. Genes, 2015, 6(4): 1215-1229.
doi: 10.3390/genes6041215 URL |
[33] |
周庆红, 周灿, 郑伟, 等. 甘蓝型油菜角果长度全基因组关联分析[J]. 中国农业科学, 2017, 50(2): 228-239.
doi: 10.3864/j.issn.0578-1752.2017.02.003 |
Zhou QH, Zhou C, Zheng W, et al. Genome wide association analysis of silique length in Brassica napus L[J]. Sci Agric Sin, 2017, 50(2): 228-239. | |
[34] |
肖小军, 韩德鹏, 周会汶, 等. 甘蓝型油菜千粒重全基因组关联分析[J]. 中国油料作物学报, 2023, 45(3): 510-517.
doi: 10.19802/j.issn.1007-9084.2022095 |
Xiao XJ, Han DP, Zhou HW, et al. Genome wide association analysis of thousand-seed weight in Brassica napus L[J]. Chin J Oil Crop Sci, 2023, 45(3): 510-517.
doi: 10.19802/j.issn.1007-9084.2022095 |
|
[35] |
Zhu QL, King GJ, Liu XY, et al. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study[J]. PLoS One, 2019, 14(8): e0221578.
doi: 10.1371/journal.pone.0221578 URL |
[36] |
Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Mol Plant, 2014, 7(5): 814-828.
doi: 10.1093/mp/ssu004 pmid: 24431192 |
[37] | Burow M, Halkier BA, Kliebenstein DJ. Regulatory networks of glucosinolates shape Arabidopsis thaliana fitness[J]. Curr Opin Plant Biol, 2010, 13(3): 348-353. |
[38] |
Sønderby IE, Burow M, Rowe HC, et al. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis[J]. Plant Physiol, 2010, 153(1): 348-363.
doi: 10.1104/pp.109.149286 pmid: 20348214 |
[39] |
Zhou XM, Zhang HY, Xie ZQ, et al. Natural variation and artificial selection at the BnaC2.MYB28 locus modulate Brassica napus seed glucosinolate[J]. Plant Physiol, 2023, 191(1): 352-368.
doi: 10.1093/plphys/kiac463 URL |
[40] |
Jhingan S, Harloff HJ, Abbadi A, et al. Reduced glucosinolate content in oilseed rape(Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes[J]. Sci Rep, 2023, 13(1): 2344.
doi: 10.1038/s41598-023-28661-6 pmid: 36759657 |
[41] |
Nour-Eldin HH, Madsen SR, Engelen S, et al. Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters[J]. Nat Biotechnol, 2017, 35(4): 377-382.
doi: 10.1038/nbt.3823 pmid: 28288105 |
[42] | 江定, 陈国菊, 雷建军, 等. 硫代葡萄糖苷运输的生理生化及分子机理研究进展[J]. 植物生理学报, 2017, 53(1): 29-37. |
Jiang D, Chen GJ, Lei JJ, et al. Advances in the physiological, biochemical and molecular mechanisms of glucosinolate transport[J]. Plant Physiol J, 2017, 53(1): 29-37. | |
[43] |
Nour-Eldin HH, Andersen TG, Burow M, et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J]. Nature, 2012, 488(7412): 531-534.
doi: 10.1038/nature11285 |
[44] |
Li XY, Sandgrind S, Moss O, et al. Efficient protoplast regeneration protocol and CRISPR/Cas9-mediated editing of glucosinolate transporter(GTR)genes in rapeseed(Brassica napus L.)[J]. Front Plant Sci, 2021, 12: 680859.
doi: 10.3389/fpls.2021.680859 URL |
[45] |
Nambiar DM, Kumari J, Augustine R, et al. GTR1 and GTR2 transporters differentially regulate tissue-specific glucosinolate contents and defence responses in the oilseed crop Brassica juncea[J]. Plant Cell Environ, 2021, 44(8): 2729-2743.
doi: 10.1111/pce.v44.8 URL |
[1] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[2] | 蔡梦鲜, 高作敏, 胡利娟, 冯群, 王洪程, 朱斌. 天然甘蓝型油菜C染色体组C1,C2缺体的创建及遗传分析[J]. 生物技术通报, 2023, 39(3): 81-88. |
[3] | 支添添, 周舟, 陈纪鹏, 韩成云. 甘蓝型油菜酪氨酸代谢关键基因FAH的克隆、功能鉴定和表达分析[J]. 生物技术通报, 2023, 39(10): 115-127. |
[4] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[5] | 李琦, 王怡超, 刘畅, 谭何新. 黄花蒿R2R3-MYB转录因子全基因组鉴定及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 65-74. |
[6] | 张秀民, 马绍英, 杨洁, 包金玉, 张晓玲, 田鹏, 路亚琦, 李胜. 以次生代谢物产量为目标的西兰花毛状根培养技术体系优化[J]. 生物技术通报, 2021, 37(8): 75-84. |
[7] | 孙小倩, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子FtMYBF的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2021, 37(3): 10-17. |
[8] | 郝晓云, 沈海涛, 李鸿彬. 甘蓝型油菜下胚轴和带柄子叶再生体系研究[J]. 生物技术通报, 2013, 0(4): 69-74. |
[9] | 杨长友, 袁中厚, 郑小敏, 张涛. 甘蓝型油菜高效离体再生体系的建立[J]. 生物技术通报, 2013, 0(1): 111-115. |
[10] | 孔芳;薛正莲;杨超英;王幼平;. 转Bar基因甘蓝型油菜叶片蛋白质组变化的初步分析[J]. , 2012, 0(10): 75-82. |
[11] | 李晓薇;苏连泰;赵旭;翟莹;张海军;张庆林;李景文;王庆钰;. 两个大豆MYB转录因子在原核细胞中的高效表达[J]. , 2011, 0(08): 99-102. |
[12] | 邓秋红;栗茂腾;向福;余龙江;. 甘蓝型油菜β碳酸酐酶的结构预测[J]. , 2010, 0(01): 111-117. |
[13] | 刘建民;李运涛;甘露;李红;栗茂腾;. napin基因启动子克隆及进化分析[J]. , 2008, 0(S1): 188-191. |
[14] | 邹智;吴刚;肖玲;武玉花;聂淑晶;肖娜;卢长明;. 植物源内含子对GUS基因表达模式的影响[J]. , 2008, 0(06): 78-82. |
[15] | 秦春圃;. 甘蓝型油菜BnKCR2基因cDNA的克隆和真核表达载体的构建[J]. , 2008, 0(04): 201-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||