生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 308-321.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0483
王子璇1,2(), 隋玉1,3, 尚学钰1,2, 马思嘉1,2, 吴天香1,2, 刘洋1,2(), 王琦1,2,3()
收稿日期:
2023-05-23
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
王琦,女,博士,教授,研究方向:菌物学;E-mail: q_wang2006@126.com作者简介:
王子璇,女,硕士研究生,研究方向:菌物药理学;E-mail: 13948530370@163.com
基金资助:
WANG Zi-xuan1,2(), SUI Yu1,3, SHANG Xue-yu1,2, MA Si-jia1,2, WU Tian-xiang1,2, LIU Yang1,2(), WANG Qi1,2,3()
Received:
2023-05-23
Published:
2024-01-26
Online:
2024-02-06
摘要:
【目的】为明确元蘑多糖的结构特征,并探究其调节巨噬细胞免疫活性机制。【方法】采用水提醇沉法获得元蘑多糖粗提物,并通过DEAE-52离子交换层析及Sephacryl S-400葡聚糖凝胶过滤层析对该多糖粗提物进行分离纯化,获得多糖组分SEP-0a。分别采用高效凝胶渗透色谱法、离子交换色谱法、傅立叶红外光谱法检测了SEP-0a的理化性质。进一步采用CCK-8法、ELISA法、qPCR法、Western blot等方法考察了元蘑多糖SEP-0a对巨噬细胞RAW264.7的免疫调节作用及机制。【结果】元蘑多糖SEP-0a由半乳糖、甘露糖、葡萄糖和岩藻糖组成,相对分子量为4.23×104 Da,并且具有α构型与β构型。体外免疫活性结果表明,元蘑多糖SEP-0a可显著增强RAW264.7细胞增殖和吞噬能力,促进该细胞活性氧(reactive oxygen species,ROS)、一氧化氮(nitric oxide,NO)的分泌,提高肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin,IL)-1β、IL-6的表达,Western blot检测发现,该多糖可显著提高核转录因子-κB(nuclear factor-κB,NF-κB)信号通路p65蛋白磷酸化表达。【结论】元蘑多糖SEP-0a可通过NF-κB信号通路调控巨噬细胞的免疫活性。
王子璇, 隋玉, 尚学钰, 马思嘉, 吴天香, 刘洋, 王琦. 元蘑多糖的结构特征及其调节巨噬细胞免疫活性机制[J]. 生物技术通报, 2024, 40(1): 308-321.
WANG Zi-xuan, SUI Yu, SHANG Xue-yu, MA Si-jia, WU Tian-xiang, LIU Yang, WANG Qi. Structural Characteristics of Sarcomyxa edulis Polysaccharide and Its Mechanism of Regulating Macrophage Immunomodulatory Activity[J]. Biotechnology Bulletin, 2024, 40(1): 308-321.
基因 Gene | 上游Forward primer(5'-3') | 下游Reverse primer(5'-3') |
---|---|---|
TNF-α | CCCTCACACTCAGATCATCTTCT | GCTACGACGTGGGCTACAG |
IL-1β | GCAACTGTTCCTGAACTCAACT | ATCTTTTGGGGTCCGTCAACT |
IL-6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
β-actin | GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT |
表1 引物序列
Table 1 Primer sequences
基因 Gene | 上游Forward primer(5'-3') | 下游Reverse primer(5'-3') |
---|---|---|
TNF-α | CCCTCACACTCAGATCATCTTCT | GCTACGACGTGGGCTACAG |
IL-1β | GCAACTGTTCCTGAACTCAACT | ATCTTTTGGGGTCCGTCAACT |
IL-6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
β-actin | GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT |
基因 Gene | 上游 Forward primer(5'-3') | 下游 Reverse primer(5'-3') |
---|---|---|
NO | CTGGTGAAGGAACGGGTCAG | CCGATCATTGACGGCGAGAAT |
TNF-α | CCCTCACACTCAGATCATCTTCT | GCTACGACGTGGGCTACAG |
IL-1β | GCAACTGTTCCTGAACTCAACT | ATCTTTTGGGGTCCGTCAACT |
IL-6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
β-actin | GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT |
表2 引物序列
Table 2 Primer sequences
基因 Gene | 上游 Forward primer(5'-3') | 下游 Reverse primer(5'-3') |
---|---|---|
NO | CTGGTGAAGGAACGGGTCAG | CCGATCATTGACGGCGAGAAT |
TNF-α | CCCTCACACTCAGATCATCTTCT | GCTACGACGTGGGCTACAG |
IL-1β | GCAACTGTTCCTGAACTCAACT | ATCTTTTGGGGTCCGTCAACT |
IL-6 | TAGTCCTTCCTACCCCAATTTCC | TTGGTCCTTAGCCACTCCTTC |
β-actin | GGCTGTATTCCCCTCCATCG | CCAGTTGGTAACAATGCCATGT |
图1 元蘑多糖洗脱曲线 A: DEAE-52离子交换层析;B: Sephacryl S-400葡聚糖凝胶过滤层析
Fig. 1 Elution curve of S. edulis polysaccharide A: DEAE-52 ion exchange column chromatography; B: sephacryl S-400 glucan gel column chromatography
图5 不同浓度SEP-0a对RAW264.7细胞增殖的影响 **P<0.01,与空白组相比(n=6)
Fig. 5 Effects of SEP-0a at different concentrations on the proliferation of RAW264.7 cells **P<0.01, compared with blank group(n=6)
图6 不同浓度SEP-0a对RAW264.7细胞吞噬作用的影响 *P<0.05;**P<0.01,与空白组相比(n=3)
Fig. 6 Effects of SEP-0a at different concentrations on the phagocytosis of RAW264.7 cells *P<0.05; **P<0.01, compared with blank group(n=3)
图7 不同浓度SEP-0a对RAW264.7细胞分泌ROS的影响 **P<0.01,与空白组相比(n=6)
Fig. 7 Effects of SEP-0a at different concentrations on the ROS secretion of RAW264.7 cells **P<0.01, compared with blank group(n=6)
图8 不同浓度SEP-0a对RAW264.7细胞分泌NO的影响 **P<0.01,与空白组相比(n=4)
Fig. 8 Effects of SEP-0a at different concentrations on NO secretion by RAW264.7 cells **P<0.01, compared with blank group(n=4)
图9 不同浓度SEP-0a对RAW264.7细胞分泌TNF-α(A)、IL-1β(B)、IL-6(C)的影响 **P<0.01,与空白组相比(n=4)
Fig. 9 Effects of SEP-0a at different concentrations on TNF-α(A), IL-1β(B)and IL-6(C)secretion by RAW264.7 cells **P<0.01, compared with blank group(n=4)
图10 不同浓度SEP-0a对RAW264.7细胞中TNF-α(A)、IL-1β(B)、IL-6(C)基因表达的影响 **P<0.01,与空白组相比(n=4)
Fig. 10 Effects of SEP-0a at different concentrations on TNF-α(A), IL-1 β(B)and IL-6(C)gene expressions by RAW264.7 cells **P<0.01, compared with blank group(n=4)
图11 SEP-0a对RAW264.7细胞蛋白磷酸化的影响 **P<0.01,与空白组相比
Fig. 11 Effects of SEP-0a on protein phosphorylation in RAW264.7 cells **P<0.01, compared with blank group
图12 NF-κB抑制剂对SEP-0a诱导RAW264.7分泌NO(A)、TNF-α(B)、IL-1β(C)和IL-6(D)的影响 **P<0.01,与空白组相比;##P<0.01,与SEP-0a组相比(n=3)
Fig. 12 Effects of NF-κB inhibitors on the secretions of NO(A), TNF-α(B), IL-1β(C)and IL-6(D)induced by SEP-0a in RAW264.7 cells **P<0.01, compared with blank group; ##P<0.01, compared with SEP-0a(n=3)
图13 NF-κB抑制剂对SEP-0a诱导RAW264.7中NO(A)、TNF-α(B)、IL-1β(C)和IL-6(D)基因表达的影响 **P<0.01,与空白组相比;##P<0.01,与SEP-0a组相比(n=4)
Fig. 13 Effects of NF-κB inhibitors on SEP-0a on the gene expressions of NO(A), TNF-α(B), IL-1β(C)and IL-6(D)by RAW264.7 cells **P<0.01, compared with blank group; ##P<0.01, compared with SEP-0a(n=4)
[1] | 田风华. 中国东北元蘑种质资源评价及其三萜合成途径相关基因研究[D]. 长春: 吉林农业大学, 2019. |
Tian FH. Evaluation of germplasm resources and genes related to triterpene synthetic pathway of Sarcomyxa edulis in Northeast China[D]. Changchun: Jilin Agricultural University, 2019. | |
[2] | 宋振康, 张海悦, 尹家乐, 等. 响应面法优化元蘑多糖提取工艺及抗疲劳活性的研究[J]. 食品科技, 2020, 45(6): 254-260. |
Song ZK, Zhang HY, Yin JL, et al. Study on optimization of extraction technology and antifatigue activity of Hohenbuehelia serotinao polysaccharide by response surface method[J]. Food Sci Technol, 2020, 45(6): 254-260. | |
[3] | 王翠翠, 崔成伟, 陈屏, 等. 金针菇化学成分及药理活性研究进展[J]. 菌物研究, 2021, 19(3): 207-216. |
Wang CC, Cui CW, Chen P, et al. Research advances on chemical constituents and pharmacological activities of Flammulina filiformis[J]. J Fungal Res, 2021, 19(3): 207-216. | |
[4] |
Yelithao K, Surayot U, Lee CS, et al. Studies on structural properties and immune-enhancing activities of glycomannans from Schizophyllum commune[J]. Carbohydr Polym, 2019, 218: 37-45.
doi: 10.1016/j.carbpol.2019.04.057 URL |
[5] |
Chen Q, Che CC, Yang SS, et al. Anti-inflammatory effects of extracellular vesicles from Morchella on LPS-stimulated RAW264.7 cells via the ROS-mediated p38 MAPK signaling pathway[J]. Mol Cell Biochem, 2023, 478(2): 317-327.
doi: 10.1007/s11010-022-04508-y |
[6] | 陈诺, 席文杰, 胡美芬, 等. 多糖免疫调节作用与结构关系研究进展[J]. 中国中药杂志, 2023, 48(10): 2667-2678. |
Chen N, Xi WJ, Hu MF, et al. Relationship between immune regulation and structure of polysaccharides[J]. China J Chin Mater Med, 2023, 48(10): 2667-2678. | |
[7] |
Zhou P, Wang L, An SY, et al. Fabrication of quercetin-loaded nanoparticles based on Hohenbuehelia serotina polysaccharides and their modulatory effects on intestinal function and gut microbiota in vivo[J]. Innov Food Sci Emerg Technol, 2022, 78: 102993.
doi: 10.1016/j.ifset.2022.102993 URL |
[8] |
Wang L, Li XY. Preparation, physicochemical property and in vitro antioxidant activity of zinc-Hohenbuehelia serotina polysaccharides complex[J]. Int J Biol Macromol, 2019, 121: 862-869.
doi: S0141-8130(18)34107-2 pmid: 30342126 |
[9] |
Liu QH, Wu J, Wang P, et al. Neutral polysaccharides from Hohenbuehelia serotina with hypoglycemic effects in a type 2 diabetic mouse model[J]. Front Pharmacol, 2022, 13: 883653.
doi: 10.3389/fphar.2022.883653 URL |
[10] | 陆艳娟, 马岩, 李晓梅, 等. 黄蘑多糖对衰老模型小鼠单胺类神经递质的影响[J]. 中国老年学杂志, 2007, 27(12): 1124-1125. |
Lu YJ, Ma Y, Li XM, et al. The effect of Chinese mushroom(Huangmo)polysaccharides on monoamine neurotransmitter in the aging mice[J]. Chin J Gerontol, 2007, 27(12): 1124-1125. | |
[11] | 隋玉, 舒昉, 崔帅, 等. 元蘑多糖提取工艺优化、结构特征和抗氧化活性[J]. 食用菌学报, 2021, 28(4): 48-56. |
Sui Y, Shu F, Cui S, et al. Extraction process optimization, structural characteristics and antioxidant activities of polysaccharides from Sarcomyxa edulis[J]. Acta Edulis Fungi, 2021, 28(4): 48-56. | |
[12] |
秦子芳, 谭晓妍, 宁慧娟, 等. 不同生长年限铁皮石斛多糖含量与特性分析[J]. 食品科学, 2018, 39(6): 189-193.
doi: 10.7506/spkx1002-6630-201806030 |
Qin ZF, Tan XY, Ning HJ, et al. Quantification and characterization of polysaccharides from different aged Dendrobium officinale stems[J]. Food Sci, 2018, 39(6): 189-193. | |
[13] |
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254.
pmid: 942051 |
[14] | 李瑾, 刘冲英, 张婷婷, 等. 微波合成金银花硒多糖工艺及免疫活性研究[J]. 中国中药杂志, 2022, 47(14): 3773-3780. |
Li J, Liu CY, Zhang TT, et al. Synthesis of seleno-polysaccharides from Lonicerae japonicae Flos via microwave and its immunological activity[J]. China J Chin Mater Med, 2022, 47(14): 3773-3780. | |
[15] | 马高兴, 王晗, 杨文建, 等. 不同提取工艺对杏鲍菇多糖结构特征及免疫活性的影响[J]. 食品科学, 2022, 43(17): 42-49. |
Ma GX, Wang H, Yang WJ, et al. Effects of different extraction processes on structural characteristic and immunomodulatory activity of Pleurotus eryngii polysaccharide[J]. Food Sci, 2022, 43(17): 42-49. | |
[16] |
Yang Y, Ye HQ, Zhao CH, et al. Value added immunoregulatory polysaccharides of Hericium erinaceus and their effect on the gut microbiota[J]. Carbohydr Polym, 2021, 262: 117668.
doi: 10.1016/j.carbpol.2021.117668 URL |
[17] | 黄菊青, 齐睿婷, 张英. 竹茹多糖的化学结构及体外免疫活性研究[J]. 中国食品学报, 2017, 17(7): 34-40. |
Huang JQ, Qi RT, Zhang Y. Structure and in vitro immunomodulatory activity of polysaccharides from bamboo(Phyllostachys pubescens mazel)shavings[J]. J Chin Inst Food Sci Technol, 2017, 17(7): 34-40. | |
[18] | 胡彦波, 王思琪, 石曾卉, 等. 水溶性豆渣酸性多糖对RAW264.7细胞的免疫调节作用及其机制[J]. 食品科学, 2022, 43(3): 169-177. |
Hu YB, Wang SQ, Shi ZH, et al. Immunomodulatory effect and mechanism of soluble acidic polysaccharides from soybean dregs on RAW264.7 cells[J]. Food Sci, 2022, 43(3): 169-177. | |
[19] | 张壮, 李琼, 黄丽萍, 等. 粉葛与葛根多糖对脂多糖诱导RAW264.7细胞的抗炎作用[J]. 现代食品科技, 2022, 38(7): 1-10. |
Zhang Z, Li Q, Huang LP, et al. Anti-inflammatory effect of Pueraria lobata(Willd.) ohwi and P.thomsonii Benth. polysaccharides on LPS-induced RAW264.7 cells[J]. Mod Food Sci Technol, 2022, 38(7): 1-10. | |
[20] |
Meng Y, Yan JM, Yang G, et al. Structural characterization and macrophage activation of a hetero-galactan isolated from Flammulina velutipes[J]. Carbohydr Polym, 2018, 183: 207-218.
doi: 10.1016/j.carbpol.2017.12.017 URL |
[21] |
Tabarsa M, You SG, Yelithao K, et al. Isolation, structural elucidation and immuno-stimulatory properties of polysaccharides from Cuminum cyminum[J]. Carbohydr Polym, 2020, 230: 115636.
doi: 10.1016/j.carbpol.2019.115636 URL |
[22] | 王丽波, 高婧宇, 李腾飞, 等. 硒化蒲公英多糖的制备、结构表征及益生菌促增殖活性[J]. 食品科学, 2021, 42(7): 169-175. |
Wang LB, Gao JY, Li TF, et al. Preparation, structural characterization and probiotics proliferation-promoting activity of selenized dandelion polysaccharide[J]. Food Sci, 2021, 42(7): 169-175. | |
[23] |
Yang J, Cao MX, Hu WY, et al. Sophorasubprosrate polysaccharide suppress the inflammatory reaction of RAW264.7 cells infected with PCV2 via regulation NF-κB/MAPKs/c-Jun signal pathway and histone acetylation modification[J]. Int J Biol Macromol, 2020, 159: 957-965.
doi: 10.1016/j.ijbiomac.2020.05.128 URL |
[24] |
宋林珍, 朱丽云, 高永生, 等. 茶多糖的结构特征与降血糖活性[J]. 食品科学, 2018, 39(19): 162-168.
doi: 10.7506/spkx1002-6630-201819025 |
Song LZ, Zhu LY, Gao YS, et al. Structural characteristics and hypoglycemic activity of polysaccharides from green tea leaves[J]. Food Sci, 2018, 39(19): 162-168.
doi: 10.1111/jfds.1974.39.issue-1 URL |
|
[25] |
Li XY, Wang ZY, Wang L. Polysaccharide of Hohenbuehelia serotina as a defense against damage by whole-body gamma irradiation of mice[J]. Carbohydr Polym, 2013, 94(2): 829-835.
doi: 10.1016/j.carbpol.2013.02.015 URL |
[26] |
Li XY, Wang L. Effect of extraction method on structure and antioxidant activity of Hohenbuehelia serotina polysaccharides[J]. Int J Biol Macromol, 2016, 83: 270-276.
doi: 10.1016/j.ijbiomac.2015.11.060 URL |
[27] | 赵炳杰, 郭岩彬. 食用菌多糖的提取纯化及生物活性研究进展[J]. 中国生物工程杂志, 2022, 42(S1): 146-159. |
Zhao BJ, Guo YB. Advances in extraction, purification and bioactivity of polysaccharides from edible fungi[J]. China Biotechnol, 2022, 42(S1): 146-159. | |
[28] |
Yu Q, Nie SP, Li WJ, et al. Macrophage immunomodulatory activity of a purified polysaccharide isolated from Ganoderma atrum[J]. Phytother Res, 2013, 27(2): 186-191.
doi: 10.1002/ptr.v27.2 URL |
[29] | 杨许花, 赵梦潇, 陈红, 等. 植物多糖免疫调节作用机制研究进展[J]. 食品安全质量检测学报, 2021, 12(13): 5349-5355. |
Yang XH, Zhao MX, Chen H, et al. Advances in research on the mechanism of immunomodulatory effects of plant polysaccharides[J]. J Food Saf Qual, 2021, 12(13): 5349-5355. | |
[30] |
Yang G, Ham I, Choi HY. Anti-inflammatory effect of prunetin via the suppression of NF-κB pathway[J]. Food Chem Toxicol, 2013, 58: 124-132.
doi: 10.1016/j.fct.2013.03.039 pmid: 23597450 |
[31] | 黄平, 洪静霞, 米杰, 等. 羊栖菜多酚通过核转录因子-κB/丝裂原活化蛋白激酶通路缓解脂多糖诱导的RAW264.7细胞炎症反应[J]. 食品科学, 2022, 43(23): 141-148. |
Huang P, Hong JX, Mi J, et al. Polyphenols extracted from Hizikia fusiformis relieves lipopolysaccharide-induced inflammation in RAW264.7 Cells via the nuclear factor-κB/mitogen-activated protein kinase signaling pathways[J]. Food Sci, 2022, 43(23): 141-148.
doi: 10.1111/jfds.1978.43.issue-1 URL |
|
[32] |
Bode JG, Albrecht U, Häussinger D, et al. Hepatic acute phase proteins—regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling[J]. Eur J Cell Biol, 2012, 91(6-7): 496-505.
doi: 10.1016/j.ejcb.2011.09.008 URL |
[33] |
苗月, 任桂红, 甄东, 等. 蛹虫草多糖调节小鼠巨噬细胞RAW264.7免疫活性的分子机制[J]. 食品科学, 2019, 40(9): 188-194.
doi: 10.7506/spkx1002-6630-20180122-294 |
Miao Y, Ren GH, Zhen D, et al. Molecular mechanism of Cordyceps militaris polysaccharides in regulating the immune function of macrophage RAW264.7 cells[J]. Food Sci, 2019, 40(9): 188-194. | |
[34] |
Ren Z, Qin T, Qiu FA, et al. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7[J]. Int J Biol Macromol, 2017, 105(Pt 1): 879-885.
doi: 10.1016/j.ijbiomac.2017.07.104 URL |
[35] | 郝正祺, 刘靖宇, 孟俊龙, 等. 绣球菌子实体单组分多糖结构表征及其免疫活性[J]. 中国食品学报, 2021, 21(10): 46-55. |
Hao ZQ, Liu JY, Meng JL, et al. Structural characterization and immunomodulatory activities of a single-component polysaccharide from the fruiting body of Sparassis crispa[J]. J Chin Inst Food Sci Technol, 2021, 21(10): 46-55. | |
[36] |
Yuan R, Huang LT, Du LJ, et al. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization[J]. Pharmacol Res, 2019, 142: 102-114.
doi: 10.1016/j.phrs.2019.02.017 URL |
[37] | 王琴琴, 韩珊, 李新星, 等. 毛蕊花苷对脂多糖诱导RAW264.7细胞炎症模型的作用及其机制研究[J]. 中草药, 2020, 51(16): 4217-4222, 4250. |
Wang QQ, Han S, Li XX, et al. Anti-inflammatory effect and mechanism of verbascoside on LPS-induced RAW264.7 cells[J]. Chin Tradit Herb Drugs, 2020, 51(16): 4217-4222, 4250. | |
[38] | 王悦. 左归丸对5/6肾切除血管钙化模型大鼠IL-1β与p65蛋白的影响[D]. 武汉: 湖北中医药大学, 2021. |
Wang Y. Effect of Zuogui pill on IL-1β and P65 protein in 5/6 nephrectomy model rats with vascular calcification[D]. Wuhan: Hubei University of Chinese Medicine, 2021. | |
[39] |
Liao WZ, Luo Z, Liu D, et al. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities[J]. J Agric Food Chem, 2015, 63(2): 535-544.
doi: 10.1021/jf504677r URL |
[40] |
Wang DD, Pan WJ, Mehmood S, et al. Polysaccharide isolated from Sarcodon aspratus induces RAW264.7 activity via TLR4-mediated NF-κB and MAPK signaling pathways[J]. Int J Biol Macromol, 2018, 120(Pt A): 1039-1047.
doi: 10.1016/j.ijbiomac.2018.08.147 URL |
[1] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[2] | 黄幸, 丁峰, 彭宏祥, 潘介春, 何新华, 徐炯志, 李琳. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12): 129-143. |
[3] | 龚睿, 孙凯, 谢道月. 真菌漆酶在绿色化学中的研究进展[J]. 生物技术通报, 2018, 34(4): 24-34. |
[4] | 王春雨, 张茜. 植物NAC转录因子功能研究进展[J]. 生物技术通报, 2018, 34(11): 8-14. |
[5] | 李露露, 曲长凤, 郑洲, 王以斌, 缪锦来, 张莉. 藻类水通道蛋白的研究进展[J]. 生物技术通报, 2017, 33(8): 1-6. |
[6] | 齐慧杰, 秦晓惠, 刘凌云. 植物Rab蛋白家族的研究进展[J]. 生物技术通报, 2016, 32(6): 7-12. |
[7] | 韩国灿, 姜少杰, 邹飞雁. 酪蛋白激酶Iα与细胞信号通路[J]. 生物技术通报, 2014, 0(3): 22-29. |
[8] | 姜珊珊, 张丹, 孔祥培, 周严, 李德全. 植物中的钙依赖蛋白激酶(CDPK)的结构特征和功能研究进展[J]. 生物技术通报, 2013, 0(6): 12-19. |
[9] | 康桂娟;曾日中;聂智毅;黎瑜;代龙军;段翠芳;. 植物NAC转录因子的研究进展[J]. , 2012, 0(11): 21-26. |
[10] | 李银心;. 组织培养植物的根共生体[J]. , 1989, 0(02): 16-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||