生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 53-61.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0787
收稿日期:
2024-08-16
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
关跃峰,男,博士,教授,研究方向:大豆重要性状调控机制解析与精准育种;E-mail: guan@gzhu.edu.cn作者简介:
张洁萍,女,硕士研究生,研究方向:植物学;E-mail: jpzhang202203@163.com
基金资助:
ZHANG Jie-ping1(), GUAN Yue-feng1,2()
Received:
2024-08-16
Published:
2024-10-26
Online:
2024-11-20
摘要:
为了应对人类对粮食的需求,基于重要基因编码区编辑以产生有利性状的研究不计其数。转录调控是控制基因表达的关键,包括作物重要的农艺性状的控制。顺式作用元件和反式作用因子之间的相互作用决定基因的时空表达模式和表达水平,重要的元件包括转录因子结合位点、增强子等在这个过程中发挥重要作用。其中启动子作为最大且最重要的顺式作用元件,对其进行改造从而改变相关基因的表达模式来创造作物有利性状是不同于编码区编辑育种的有效策略。目前,启动子编辑策略有两种应用的方式。其一是定向改造以生成确定的有利性状,其二是在特定的启动子区域内随机产生新的等位基因,根据表型进行选择,同时也产生新的变异资源。本文主要讨论了启动子编辑在作物中的应用,包括提高产量、改善品质以及增强对生物和非生物胁迫的耐受性,旨在关注农作物精准育种最新前沿,为启动子基因编辑技术的开发与应用提供研究思路和理论借鉴。
张洁萍, 关跃峰. 基于启动子编辑的作物育种[J]. 生物技术通报, 2024, 40(10): 53-61.
ZHANG Jie-ping, GUAN Yue-feng. Crop Breeding Based on Promoter Editing[J]. Biotechnology Bulletin, 2024, 40(10): 53-61.
作物 Crop | 靶向基因 Target gene(s) | 靶向区域确定 Determination of targeting region | 植株表型 Plant phenotype | 参考文献 Reference | |
---|---|---|---|---|---|
水稻 | Oryza sativa | IPA1 | 随机敲除 | 分蘖数平均增加50%,单株产量翻倍 | [ |
水稻 | O. sativa | D18 | 机器学习 | 株高与产量的连续变异性状 | [ |
水稻 | O. sativa | GS3 | 机器学习 | 百粒重的连续变异性状 | [ |
玉米 | Zea mays | CLE | 组学信息 | 穗行数与行粒数的连续变异性状 | [ |
番茄 | Lycopersicon esculentum Miller | CLV3 | 随机敲除 | 果实大小连续变异性状 | [ |
番茄 | L. esculentum Miller | KLUH | 自然变异区、顺式作用元件 | 果实重量增加6.3%-15.7% | [ |
水稻 | O. sativa | Wx | 自然变异区 | 直链淀粉含量下降7.09%-11.50% | [ |
水稻 | O. sativa | GS3 | 机器学习 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降10.66%-14.85% | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | SLG7 | 网站预测顺式作用元件 | 垩白粒率4.5%-10.0% | [ |
水稻 | O. sativa | NAS2 | 网站预测顺式作用元件 | 锌含量增加0%-50% | [ |
番茄 | L. esculentum Miller | ANT1 | 启动子替换 | 花青素含量增加,果实为紫色 | [ |
水稻 | O. sativa | Xa13 | 细菌光诱导元件 | 白叶枯病变面积减少90%,育性不变 | [ |
水稻 | O. sativa | SWEET11/13/14 | EBE | 白叶枯病变长度可减少94% | [ |
水稻 | O. sativa | SWEET14 | EBE | 白叶枯病变长度可减少90% | [ |
水稻 | O. sativa | SULTR3;6 | EBE | 细菌性条斑病长度可减少93% | [ |
水稻 | O. sativa | CP12 | 启动子替换 | 除草剂抗性 | [ |
葡萄柚 | Citrus paradisi | LOB1 | EBE | 抗溃疡病菌 | [ |
万金橙 | Citrus sinensis Osbeck | LOB1 | EBE | 溃疡病变面积可减少90% | [ |
小麦 | Triticum aestivum | ARGOS8 | 启动子替换 | 干旱条件下每亩增产136.08 kg | [ |
小麦 | T. aestivum | VRN-A1 | 自然变异区、顺式作用元件 | 抽穗期缩短了2-3 d | [ |
表1 针对作物启动子编辑示例
Table 1 Examples of crop promoter editing
作物 Crop | 靶向基因 Target gene(s) | 靶向区域确定 Determination of targeting region | 植株表型 Plant phenotype | 参考文献 Reference | |
---|---|---|---|---|---|
水稻 | Oryza sativa | IPA1 | 随机敲除 | 分蘖数平均增加50%,单株产量翻倍 | [ |
水稻 | O. sativa | D18 | 机器学习 | 株高与产量的连续变异性状 | [ |
水稻 | O. sativa | GS3 | 机器学习 | 百粒重的连续变异性状 | [ |
玉米 | Zea mays | CLE | 组学信息 | 穗行数与行粒数的连续变异性状 | [ |
番茄 | Lycopersicon esculentum Miller | CLV3 | 随机敲除 | 果实大小连续变异性状 | [ |
番茄 | L. esculentum Miller | KLUH | 自然变异区、顺式作用元件 | 果实重量增加6.3%-15.7% | [ |
水稻 | O. sativa | Wx | 自然变异区 | 直链淀粉含量下降7.09%-11.50% | [ |
水稻 | O. sativa | GS3 | 机器学习 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降10.66%-14.85% | [ |
水稻 | O. sativa | Wx | 网站预测顺式作用元件 | 直链淀粉含量下降的连续变异性状 | [ |
水稻 | O. sativa | SLG7 | 网站预测顺式作用元件 | 垩白粒率4.5%-10.0% | [ |
水稻 | O. sativa | NAS2 | 网站预测顺式作用元件 | 锌含量增加0%-50% | [ |
番茄 | L. esculentum Miller | ANT1 | 启动子替换 | 花青素含量增加,果实为紫色 | [ |
水稻 | O. sativa | Xa13 | 细菌光诱导元件 | 白叶枯病变面积减少90%,育性不变 | [ |
水稻 | O. sativa | SWEET11/13/14 | EBE | 白叶枯病变长度可减少94% | [ |
水稻 | O. sativa | SWEET14 | EBE | 白叶枯病变长度可减少90% | [ |
水稻 | O. sativa | SULTR3;6 | EBE | 细菌性条斑病长度可减少93% | [ |
水稻 | O. sativa | CP12 | 启动子替换 | 除草剂抗性 | [ |
葡萄柚 | Citrus paradisi | LOB1 | EBE | 抗溃疡病菌 | [ |
万金橙 | Citrus sinensis Osbeck | LOB1 | EBE | 溃疡病变面积可减少90% | [ |
小麦 | Triticum aestivum | ARGOS8 | 启动子替换 | 干旱条件下每亩增产136.08 kg | [ |
小麦 | T. aestivum | VRN-A1 | 自然变异区、顺式作用元件 | 抽穗期缩短了2-3 d | [ |
[1] | Hua L, Wang D, Tan LB, et al. LABA1 a domestication gene associated with long, barbed awns in wild rice[J]. Plant Cell, 2015, 27(7): 1875-1888. |
[2] |
Zhu ZF, Tan LB, Fu YC, et al. Genetic control of inflorescence architecture during rice domestication[J]. Nat Commun, 2013, 4: 2200.
doi: 10.1038/ncomms3200 pmid: 23884108 |
[3] | Zhou Y, Lu DF, Li CY, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor shattering abortion1[J]. Plant Cell, 2012, 24(3): 1034-1048. |
[4] |
Tian ZX, Wang XB, Lee RA, et al. Artificial selection for determinate growth habit in soybean[J]. Proc Natl Acad Sci USA, 2010, 107(19): 8563-8568.
doi: 10.1073/pnas.1000088107 pmid: 20421496 |
[5] |
Dong Y, Yang X, Liu J, et al. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean[J]. Nat Commun, 2014, 5: 3352.
doi: 10.1038/ncomms4352 pmid: 24549030 |
[6] |
Chakrabarti M, Zhang N, Sauvage C, et al. A cytochrome P450 regulates a domestication trait in cultivated tomato[J]. Proc Natl Acad Sci USA, 2013, 110(42): 17125-17130.
doi: 10.1073/pnas.1307313110 pmid: 24082112 |
[7] |
Miura K, Ikeda M, Matsubara A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nat Genet, 2010, 42(6): 545-549.
doi: 10.1038/ng.592 pmid: 20495564 |
[8] |
Liang QJ, Chen LY, Yang X, et al. Natural variation of Dt2 determines branching in soybean[J]. Nat Commun, 2022, 13(1): 6429.
doi: 10.1038/s41467-022-34153-4 pmid: 36307423 |
[9] | Yang YH, Xu CD, Shen ZY, et al. Crop quality improvement through genome editing strategy[J]. Front Genome Ed, 2022, 3: 819687. |
[10] | Li CX, Liu CL, Qi XT, et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize[J]. Plant Biotechnol J, 2017, 15(12): 1566-1576. |
[11] | Zhong XB, Wang J, Shi XL, et al. Genetically optimizing soybean nodulation improves yield and protein content[J]. Nat Plants, 2024, 10(5): 736-742. |
[12] | Lin WX, Bai MY, Peng CY, et al. Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield[J]. aBIOTECH, 2024, 5(2): 196-201. |
[13] |
Gao CX. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6): 1621-1635.
doi: 10.1016/j.cell.2021.01.005 pmid: 33581057 |
[14] |
Xing SN, Chen KL, Zhu HC, et al. Fine-tuning sugar content in strawberry[J]. Genome Biol, 2020, 21(1): 230.
doi: 10.1186/s13059-020-02146-5 pmid: 32883370 |
[15] | Crick F. Central dogma of molecular biology[J]. Nature, 1970, 227: 561-563. |
[16] |
Zhou XK, Zhu T, Fang W, et al. Systematic annotation of conservation states provides insights into regulatory regions in rice[J]. J Genet Genomics, 2022, 49(12): 1127-1137.
doi: 10.1016/j.jgg.2022.04.003 pmid: 35470092 |
[17] |
Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nat Rev Genet, 2020, 21(2): 71-87.
doi: 10.1038/s41576-019-0173-8 pmid: 31605096 |
[18] |
Yang C, Luo M, Zhuang XH, et al. Transcriptional and epigenetic regulation of autophagy in plants[J]. Trends Genet, 2020, 36(9): 676-688.
doi: S0168-9525(20)30159-1 pmid: 32674948 |
[19] | Zheng XM, Chen J, Pang HB, et al. Genome-wide analyses reveal the role of noncoding variation in complex traits during rice domestication[J]. Sci Adv, 2019, 5(12): eaax3619. |
[20] | Lin XL, Xu YX, Wang DZ, et al. Systematic identification of wheat spike developmental regulators by integrated multi-omics, transcriptional network, GWAS, and genetic analyses[J]. Mol Plant, 2024, 17(3): 438-459. |
[21] | Zhang ZH, Zhang X, Lin ZL, et al. A large transposon insertion in the stiff1 promoter increases stalk strength in maize[J]. Plant Cell, 2020, 32(1): 152-165. |
[22] |
Swinnen G, Goossens A, Pauwels L. Lessons from domestication: targeting cis-regulatory elements for crop improvement[J]. Trends Plant Sci, 2016, 21(6): 506-515.
doi: S1360-1385(16)00029-7 pmid: 26876195 |
[23] | Hochheimer A, Tjian R. Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression[J]. Genes Dev, 2003, 17(11): 1309-1320. |
[24] | Amack SC, Antunes MS. CaMV35S promoter-A plant biology and biotechnology workhorse in the era of synthetic biology[J]. Curr Plant Biol, 2020, 24: 100179. |
[25] | Tsuda K, Suzuki T, Mimura M, et al. Comparison of constitutive promoter activities and development of maize ubiquitin promoter- and Gateway-based binary vectors for rice[J]. Plant Biotechnol, 2022, 39(2): 139-146. |
[26] | Wilkinson MJ, Twyman RM. Control of gene expression: regulation of transcription[M]// Encyclopedia of Applied Plant Sciences. Amsterdam: Elsevier, 2017: 138-146. |
[27] | Shi YN, Li Y, Guo YC, et al. A rapid pipeline for pollen- and anther-specific gene discovery based on transcriptome profiling analysis of maize tissues[J]. Int J Mol Sci, 2021, 22(13): 6877. |
[28] |
Koehorst-van Putten HJJ, Wolters AM A, Pereira-Bertram IM, et al. Cloning and characterization of a tuberous root-specific promoter from cassava(Manihot esculenta Crantz)[J]. Planta, 2012, 236(6): 1955-1965.
doi: 10.1007/s00425-012-1796-6 pmid: 23132522 |
[29] |
Jeong JS, Kim YS, Baek KH, et al. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions[J]. Plant Physiol, 2010, 153(1): 185-197.
doi: 10.1104/pp.110.154773 pmid: 20335401 |
[30] |
Roy S, Choudhury SR, Singh SK, et al. Functional analysis of light-regulated promoter region of AtPolλ gene[J]. Planta, 2012, 235(2): 411-432.
doi: 10.1007/s00425-011-1517-6 pmid: 21947619 |
[31] | Lee SC, Kim SH, Kim SR. Drought inducible OsDhn1 promoter is activated by OsDREB1A and OsDREB1D[J]. J Plant Biol, 2013, 56(2): 115-121. |
[32] |
Walcher CL, Nemhauser JL. Bipartite promoter element required for auxin response[J]. Plant Physiol, 2012, 158(1): 273-282.
doi: 10.1104/pp.111.187559 pmid: 22100645 |
[33] | Juven-Gershon T, Hsu JY, Kadonaga JT. Perspectives on the RNA polymerase II core promoter[J]. Biochem Soc Trans, 2006, 34(Pt 6): 1047-1050. |
[34] | Hernandez-Garcia CM, Finer JJ. Identification and validation of promoters and cis-acting regulatory elements[J]. Plant Sci, 2014, 217/218: 109-119. |
[35] | Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1): 325-327. |
[36] |
Higo K, Ugawa Y, Iwamoto M, et al. Plant cis-acting regulatory DNA elements(PLACE)database: 1999[J]. Nucleic Acids Res, 1999, 27(1): 297-300.
doi: 10.1093/nar/27.1.297 pmid: 9847208 |
[37] |
Matys V, Fricke E, Geffers R, et al. TRANSFAC: transcriptional regulation, from patterns to profiles[J]. Nucleic Acids Res, 2003, 31(1): 374-378.
doi: 10.1093/nar/gkg108 pmid: 12520026 |
[38] |
Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat Biotechnol, 2020, 38(7): 824-844.
doi: 10.1038/s41587-020-0561-9 pmid: 32572269 |
[39] |
Xin CC, Yin JH, Yuan SP, et al. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J]. Nat Commun, 2022, 13(1): 5623.
doi: 10.1038/s41467-022-33346-1 pmid: 36153319 |
[40] |
Song XG, Meng XB, Guo HY, et al. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size[J]. Nat Biotechnol, 2022, 40(9): 1403-1411.
doi: 10.1038/s41587-022-01281-7 pmid: 35449414 |
[41] |
Zhou JP, Liu GQ, Zhao YX, et al. An efficient CRISPR-Cas12a promoter editing system for crop improvement[J]. Nat Plants, 2023, 9(4): 588-604.
doi: 10.1038/s41477-023-01384-2 pmid: 37024659 |
[42] | Liu L, Gallagher J, Arevalo ED, et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nat Plants, 2021, 7(3): 287-294. |
[43] |
Rodríguez-Leal D, Lemmon ZH, Man J, et al. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.e8.
doi: S0092-8674(17)30988-1 pmid: 28919077 |
[44] | Li Q, Feng Q, Snouffer A, et al. Increasing fruit weight by editing a cis-regulatory element in tomato KLUH promoter using CRISPR/Cas9[J]. Front Plant Sci, 2022, 13: 879642. |
[45] | Tang WJ, Chen HY, Zhang SB, et al. A novel allele in the promoter of Wx decreases gene expression and confers lower apparent amylose contents in Japonica rice(Oryza sativa L.)[J]. Plants(Basel), 2024, 13(5): 745. |
[46] | Huang LC, Li QF, Zhang CQ, et al. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2020, 18(11): 2164-2166. |
[47] | Zeng DC, Liu TL, Ma XL, et al. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5' UTR-intron editing improves grain quality in rice[J]. Plant Biotechnol J, 2020, 18(12): 2385-2387. |
[48] | Tan WC, Miao J, Xu B, et al. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7[J]. Plant Biotechnol J, 2023, 21(7): 1305-1307. |
[49] | Ludwig Y, Dueñas C Jr, Arcillas E, et al. CRISPR-mediated promoter editing of a cis-regulatory element of OsNAS2 increases Zn uptake/translocation and plant yield in rice[J]. Front Genome Ed, 2024, 5: 1308228. |
[50] |
Čermák T, Baltes NJ, Čegan R, et al. High-frequency, precise modification of the tomato genome[J]. Genome Biol, 2015, 16: 232.
doi: 10.1186/s13059-015-0796-9 pmid: 26541286 |
[51] | Li CY, Zhou L, Wu B, et al. Improvement of bacterial blight resistance in two conventionally cultivated rice varieties by editing the noncoding region[J]. Cells, 2022, 11(16): 2535. |
[52] |
Oliva R, Ji CH, Atienza-Grande G, et al. Broad-spectrum resistance to bacterial blight in rice using genome editing[J]. Nat Biotechnol, 2019, 37(11): 1344-1350.
doi: 10.1038/s41587-019-0267-z pmid: 31659337 |
[53] | Duy PN, Lan DT, Pham Thu H, et al. Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter[J]. PLoS One, 2021, 16(9): e0255470. |
[54] |
Xu XM, Xu ZY, Li ZY, et al. Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3;6[J]. Plant Biotechnol J, 2021, 19(6): 1101-1103.
doi: 10.1111/pbi.13602 pmid: 33942463 |
[55] |
Lu Y, Wang JY, Chen B, et al. A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice[J]. Nat Plants, 2021, 7(11): 1445-1452.
doi: 10.1038/s41477-021-01019-4 pmid: 34782773 |
[56] | Jia HG, Omar AA, Orbović V, et al. Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-resistant ‘Duncan’ grapefruit[J]. Phytopathology, 2022, 112(2): 308-314. |
[57] | Peng AH, Chen SC, Lei TG, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in Citrus[J]. Plant Biotechnol J, 2017, 15(12): 1509-1519. |
[58] |
Shi JR, Gao HR, Wang HY, et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnol J, 2017, 15(2): 207-216.
doi: 10.1111/pbi.12603 pmid: 27442592 |
[59] | Miroshnichenko D, Timerbaev V, Klementyeva A, et al. CRISPR/Cas9-induced modification of the conservative promoter region of VRN-A1 alters the heading time of hexaploid bread wheat[J]. Front Plant Sci, 2022, 13: 1048695. |
[60] | Ray DK, Mueller ND, West PC, et al. Yield trends are insufficient to double global crop production by 2050[J]. PLoS One, 2013, 8(6): e66428. |
[61] |
Tilman D, Balzer C, Hill J, et al. Global food demand and the sustainable intensification of agriculture[J]. Proc Natl Acad Sci USA, 2011, 108(50): 20260-20264.
doi: 10.1073/pnas.1116437108 pmid: 22106295 |
[62] | Khush GS. Breaking the yield frontier of rice[J]. GeoJournal, 1995, 35(3): 329-332. |
[63] |
Jiao YQ, Wang YH, Xue DW, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544.
doi: 10.1038/ng.591 pmid: 20495565 |
[64] | Chu YH, Jang JC, Huang ZJ, et al. Tomato locule number and fruit size controlled by natural alleles of lc and fas[J]. Plant Direct, 2019, 3(7): e00142. |
[65] | Ramesh M, Zakiuddin Ali S, Bhattacharya KR. Structure of rice starch and its relation to cooked-rice texture[J]. Carbohydr Polym, 1999, 38(4): 337-347. |
[66] | Nawaz M, Sun JF, Shabbir S, et al. A review of plants strategies to resist biotic and abiotic environmental stressors[J]. Sci Total Environ, 2023, 900: 165832. |
[67] | Yuan M, Chu ZH, Li XH, et al. The bacterial pathogen Xanthomonas oryzae overcomes rice defenses by regulating host copper redistribution[J]. Plant Cell, 2010, 22(9): 3164-3176. |
[68] |
Li CY, Li W, Zhou ZH, et al. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice[J]. Plant Biotechnol J, 2020, 18(2): 313-315.
doi: 10.1111/pbi.13217 pmid: 31344313 |
[69] |
Hickey LT, Hafeez AN, Robinson H, et al. Breeding crops to feed 10 billion[J]. Nat Biotechnol, 2019, 37(7): 744-754.
doi: 10.1038/s41587-019-0152-9 pmid: 31209375 |
[70] |
Doebley J, Lukens L. Transcriptional regulators and the evolution of plant form[J]. Plant Cell, 1998, 10(7): 1075-1082.
doi: 10.1105/tpc.10.7.1075 pmid: 9668128 |
[71] | Brkljacic J, Grotewold E. Combinatorial control of plant gene expression[J]. Biochim Biophys Acta Gene Regul Mech, 2017, 1860(1): 31-40. |
[72] |
Yuste-Lisbona FJ, Fernández-Lozano A, Pineda B, et al. ENO regulates tomato fruit size through the floral meristem development network[J]. Proc Natl Acad Sci USA, 2020, 117(14): 8187-8195.
doi: 10.1073/pnas.1913688117 pmid: 32179669 |
[73] |
Zhao HN, Zhang WL, Chen LF, et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome[J]. Plant Physiol, 2018, 176(4): 2789-2803.
doi: 10.1104/pp.17.01467 pmid: 29463772 |
[74] |
Hellman LM, Fried MG. Electrophoretic mobility shift assay(EMSA)for detecting protein-nucleic acid interactions[J]. Nat Protoc, 2007, 2(8): 1849-1861.
doi: 10.1038/nprot.2007.249 pmid: 17703195 |
[75] | Xie L, Liu MH, Zhao L, et al. RiceENCODE: a comprehensive epigenomic database as a rice Encyclopedia of DNA Elements[J]. Mol Plant, 2021, 14(10): 1604-1606. |
[76] | Fu LY, Zhu T, Zhou XK, et al. ChIP-Hub provides an integrative platform for exploring plant regulome[J]. Nat Commun, 2022, 13(1): 3413. |
[77] | Zhao H, Tu Z, Liu YM, et al. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants[J]. Nucleic Acids Res, 2021, 49(W1): W523-W529. |
[78] |
Baek M, McHugh R, Anishchenko I, et al. Accurate prediction of protein-nucleic acid complexes using RoseTTAFoldNA[J]. Nat Methods, 2024, 21(1): 117-121.
doi: 10.1038/s41592-023-02086-5 pmid: 37996753 |
[79] |
Liang YM, Liu HJ, Yan JB, et al. Natural variation in crops: realized understanding, continuing promise[J]. Annu Rev Plant Biol, 2021, 72: 357-385.
doi: 10.1146/annurev-arplant-080720-090632 pmid: 33481630 |
[80] |
Washburn JD, Mejia-Guerra MK, Ramstein G, et al. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence[J]. Proc Natl Acad Sci USA, 2019, 116(12): 5542-5549.
doi: 10.1073/pnas.1814551116 pmid: 30842277 |
[81] | Peleke FF, Zumkeller SM, Gültas M, et al. Deep learning the cis-regulatory code for gene expression in selected model plants[J]. Nat Commun, 2024, 15(1): 3488. |
[82] | Deng KX, Zhang QZ, Hong YX, et al. iCREPCP: a deep learning-based web server for identifying base-resolution cis-regulatory elements within plant core promoters[J]. Plant Commun, 2023, 4(1): 100455. |
[83] | Wang YF, Zhang PX, Guo WJ, et al. A deep learning approach to Automate whole-genome prediction of diverse epigenomic modifications in plants[J]. New Phytol, 2021, 232(2): 880-897. |
[84] | Chen YQ, Gao YJ, Zhou HJ, et al. AthEDL: Identifying enhancers in Arabidopsis thaliana using anattention-based deep learning method[J]. Curr Bioinform, 2022, 17(6): 531-540. |
[85] |
Zhang N, McHale LK, Finer JJ. Changes to the core and flanking sequences of G-box elements lead to increases and decreases in gene expression in both native and synthetic soybean promoters[J]. Plant Biotechnol J, 2019, 17(4): 724-735.
doi: 10.1111/pbi.13010 pmid: 30191675 |
[1] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[2] | 李明坤, 毕美营, 张天航, 吴翔宇, 杨培儒, 应明. UgRNA/Cas9多基因编辑法恢复根际细菌农用功能的研究[J]. 生物技术通报, 2024, 40(10): 275-287. |
[3] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[4] | 徐红云, 张恩辉, 于存. 柽柳ThWRKY4转录因子结合ARR1AT元件调控基因表达[J]. 生物技术通报, 2021, 37(3): 18-26. |
[5] | 张桐, 李智强, 伍国强. WRKY转录因子在植物逆境响应中的作用[J]. 生物技术通报, 2021, 37(10): 203-215. |
[6] | 李树磊, 郑红艳, 王磊. 基因编辑技术在作物育种中的应用与展望[J]. 生物技术通报, 2020, 36(11): 209-221. |
[7] | 王博, 王莲萍, 杨春雨, 国会艳, 魏继承. 白桦E-box元件的载体构建及与BplMYB46转录因子的互作分析[J]. 生物技术通报, 2018, 34(12): 110-115. |
[8] | 黄大昉. 转基因农作物育种发展与思考[J]. 生物技术通报, 2015, 31(4): 3-6. |
[9] | 李濯雪,陈信波. 植物诱导型启动子及相关顺式作用元件研究进展[J]. 生物技术通报, 2015, 31(10): 8-15. |
[10] | 王婧, 李冰, 刘翠翠, 朱阵, 张继瑜. 启动子结构和功能研究进展[J]. 生物技术通报, 2014, 30(8): 40-45. |
[11] | 黄诗玮 马述 田云 卢向阳. 植物中响应茉莉素应答的顺式作用元件[J]. 生物技术通报, 2013, 0(4): 8-13. |
[12] | 郭晋艳;郑晓瑜;邹翠霞;李秋莉;. 植物非生物胁迫诱导启动子顺式元件及转录因子研究进展[J]. , 2011, 0(04): 16-20. |
[13] | 宋扬;周军会;张永强;. 植物组织特异性启动子研究[J]. , 2007, 0(06): 21-24. |
[14] | KentF.McCueAndrewD.Hanson;陶冶;. 耐旱性和耐盐性:认识及应用[J]. , 1991, 0(10): 1-3. |
[15] | 岳绍先;辛志勇;. 植物细胞工程技术育种的研究现状与发展趋势[J]. , 1986, 0(04): 6-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||