生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 62-75.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0620
收稿日期:
2024-07-01
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
邬倩,女,博士,副研究员,研究方向:植物逆境应答;E-mail: wuqian01@caas.cn作者简介:
陈梦娇,女,博士研究生,研究方向:植物逆境应答;E-mail: 2021204030@stu.njau.edu.cn李洋洋为本文共同第一作者
基金资助:
CHEN Meng-jiao1,2(), LI Yang-yang2,3,4, WU Qian2()
Received:
2024-07-01
Published:
2024-10-26
Online:
2024-11-20
摘要:
植物谷氨酸受体(glutamate receptor-like, GLRs)是动物离子型谷氨酸受体(inotropic glutamate receptors, iGluRs)的同源蛋白,在开花植物中具有多个拷贝,常以功能冗余的基因家族形式共同调节植物生长发育和逆境应答过程。GLRs在植物中发挥作用的机制与其动物同源蛋白既有类似之处,但又表现出植物特异性。iGluRs在哺乳动物的神经系统中发挥重要作用。在iGluRs介导的神经传导中,由突触前膜释放的神经递质识别并结合突触后膜的iGluRs,iGluRs介导的阳离子内流引起突触后膜的去极化,形成动作电位的传递,构成神经传导的基础。过去20多年的研究发现,植物GLRs也可以作为离子通道蛋白,通过调节跨膜离子流行使功能。本文系统综述了植物谷氨酸受体的蛋白结构和演化特征,并对已报道的重要功能位点进行阐释;总结了近些年来对植物谷氨酸受体蛋白在植物生长发育不同时期,以及多种生物和非生物逆境应答中的功能的研究进展,并比较了其与动物iGluRs作用机制的异同;提出并梳理了该领域仍待解决的重要科学问题;最后展望了该蛋白家族在作物耐逆育种中的重要应用前景和价值,以期为改良作物耐逆性状提供线索。
陈梦娇, 李洋洋, 邬倩. 谷氨酸受体蛋白调控植物生长与胁迫应答的研究进展[J]. 生物技术通报, 2024, 40(10): 62-75.
CHEN Meng-jiao, LI Yang-yang, WU Qian. Research Advances in Plant Growth and Stress Response Regulation Mediated by Glutamate Receptor-like Proteins[J]. Biotechnology Bulletin, 2024, 40(10): 62-75.
图1 植物谷氨酸受体蛋白结构和序列特征 A:植物谷氨酸受体蛋白的拓扑结构;ATD:氨基末端结构域;LBD:配体结合结构域;TMD:跨膜结构域;CTD:羧基末端结构域;S1:片段1;S2:片段2;GSH:谷胱甘肽;M1、M3、M4:跨膜结构域M1、M3、M4;M2:部分跨膜结构域M2;部分已报道功能位点如图中标注;B:谷氨酸受体M3跨膜区域蛋白序列比对;比对的序列分别来自模式植物拟南芥(At)、小立碗藓(Pp)、地钱(Mp)、铁线蕨(Ac)、银杏(Gb)、水稻(Os)、人类(Hs);C:已报道的植物谷氨酸受体蛋白配体及其结合位点
Fig. 1 Protein structural and sequence characteristics of plant GLRs A: The topological structure of plant glutamate receptor proteins. ATD: Amino-terminal domain; LBD: ligand-binding domain; TMD: transmembrane domain; CTD: carboxy-terminal domain; S1: segment 1; S2: segment 2; GSH: glutathione; M1, M3, M4: transmembrane-spanning domains 1, 3, 4; M2: partial transmembrane domain M2. Some of the reported functional sites are labeled. B: Sequence alignment of the partial M3 region of glutamate receptor. The aligned sequences are from model plant Arabidopsis thaliana(At), Physcomitrella patens(Pp), Marchantina polymorpha(Mp), Adiantum capillus-vigor(Ac), Ginkgo biloba(Gb), Oryza sativa(Os), and Homo sapiens(Hs). C: Reported plant glutamate receptor protein ligands and their binding sites
类别 Group | 物种 Species | GLRs数量 Number of GLRs | GLRs各分支数量Number of GLRs in each clades | 参考文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
GLR0 | GLR1 | GLR2 | GLR3 | GLR4 | ||||
藻类植物Algae | 莱茵衣藻Chlamydomonas rheinhardtii | 1 | 1 | 0 | 0 | 0 | 0 | [ |
苔藓植物Bryophytes | 地钱Marchantia polymorpha | 1 | 0 | 0 | 0 | 1 | 0 | [ |
小立碗藓Physcomitrella patens | 2 | 0 | 0 | 0 | 2 | 0 | [ | |
蕨类植物Pteridophyte | 江南卷柏Selaginella moellendorffii | 2 | 0 | 0 | 0 | 2 | 0 | [ |
裸子植物Gymnosperm | 银杏Ginkgo biloba | 9 | 0 | 0 | 0 | 9 | 0 | [ |
双子叶植物Eudicots | 大豆Glycine max | 31 | 0 | 0 | 13 | 18 | 0 | [ |
番茄Solanum lycopersicum | 13 | 0 | 2 | 6 | 5 | 0 | [ | |
葡萄Vitis vinifera | 11 | 0 | 1 | 5 | 5 | 0 | [ | |
拟南芥Arabidopsis thaliana | 20 | 0 | 4 | 9 | 7 | 0 | [ | |
野草莓Fragaria vesca | 36 | 0 | 3 | 23 | 2 | 8 | [ | |
桃Prunus persica | 40 | 0 | 6 | 14 | 12 | 8 | [ | |
梅Prunus mume | 34 | 0 | 5 | 14 | 7 | 8 | [ | |
单子叶植物Monocots | 水稻Oryza sativa | 13 | 0 | 4 | 4 | 4 | 1 | [ |
玉米Zea mays | 17 | 0 | 0 | 7 | 10 | 0 | [ | |
甜根子草Saccharum spontaneum | 22 | 0 | 1 | 14 | 7 | 0 | [ |
表1 部分已发表物种中GLRs家族成员分支和数量统计
Table 1 Clades and numbers of GLR family members in some published species
类别 Group | 物种 Species | GLRs数量 Number of GLRs | GLRs各分支数量Number of GLRs in each clades | 参考文献 Reference | ||||
---|---|---|---|---|---|---|---|---|
GLR0 | GLR1 | GLR2 | GLR3 | GLR4 | ||||
藻类植物Algae | 莱茵衣藻Chlamydomonas rheinhardtii | 1 | 1 | 0 | 0 | 0 | 0 | [ |
苔藓植物Bryophytes | 地钱Marchantia polymorpha | 1 | 0 | 0 | 0 | 1 | 0 | [ |
小立碗藓Physcomitrella patens | 2 | 0 | 0 | 0 | 2 | 0 | [ | |
蕨类植物Pteridophyte | 江南卷柏Selaginella moellendorffii | 2 | 0 | 0 | 0 | 2 | 0 | [ |
裸子植物Gymnosperm | 银杏Ginkgo biloba | 9 | 0 | 0 | 0 | 9 | 0 | [ |
双子叶植物Eudicots | 大豆Glycine max | 31 | 0 | 0 | 13 | 18 | 0 | [ |
番茄Solanum lycopersicum | 13 | 0 | 2 | 6 | 5 | 0 | [ | |
葡萄Vitis vinifera | 11 | 0 | 1 | 5 | 5 | 0 | [ | |
拟南芥Arabidopsis thaliana | 20 | 0 | 4 | 9 | 7 | 0 | [ | |
野草莓Fragaria vesca | 36 | 0 | 3 | 23 | 2 | 8 | [ | |
桃Prunus persica | 40 | 0 | 6 | 14 | 12 | 8 | [ | |
梅Prunus mume | 34 | 0 | 5 | 14 | 7 | 8 | [ | |
单子叶植物Monocots | 水稻Oryza sativa | 13 | 0 | 4 | 4 | 4 | 1 | [ |
玉米Zea mays | 17 | 0 | 0 | 7 | 10 | 0 | [ | |
甜根子草Saccharum spontaneum | 22 | 0 | 1 | 14 | 7 | 0 | [ |
图2 谷氨酸受体蛋白调控植物生长和逆境应答的功能和可能机制 A:不同谷氨酸受体蛋白家族成员在植物生长发育和逆境应答中的功能小结;B:谷氨酸受体蛋白发挥作用的可能作用机制示意图;外界刺激引起跨膜谷氨酸受体蛋白通道的打开,促进细胞质钙离子浓度的增加,进而激活下游一系列应答
Fig. 2 Regulatory roles and mechanism of GLRs in plant growth and stress response A: A summary of the functions of different GLR members in plant growth and stress responses. B: Schematic diagram showing the possible mechanism of GLR actions. Upon external stimuli, GLR channels are open, resulting in the increase of cytosolic calcium levels and the activation of downstream responses
[1] | Lam HM, Chiu J, Hsieh MH, et al. Glutamate-receptor genes in plants[J]. Nature, 1998, 396: 125-126. |
[2] |
De Bortoli S, Teardo E, Szabò I, et al. Evolutionary insight into the ionotropic glutamate receptor superfamily of photosynthetic organisms[J]. Biophys Chem, 2016, 218: 14-26.
doi: S0301-4622(16)30184-3 pmid: 27586818 |
[3] | Simon AA, Navarro-Retamal C, Feijó JA. Merging signaling with structure: functions and mechanisms of plant glutamate receptor ion channels[J]. Annu Rev Plant Biol, 2023, 74: 415-452. |
[4] |
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function[J]. Pharmacol Rev, 2010, 62(3): 405-496.
doi: 10.1124/pr.109.002451 pmid: 20716669 |
[5] |
Hansen KB, Wollmuth LP, Bowie D, et al. Structure, function, and pharmacology of glutamate receptor ion channels[J]. Pharmacol Rev, 2021, 73(4): 298-487.
doi: 10.1124/pharmrev.120.000131 pmid: 34753794 |
[6] | Qi Z, Stephens NR, Spalding EP. Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile[J]. Plant Physiol, 2006, 142(3): 963-971. |
[7] | Wudick MM, Portes MT, Michard E, et al. CORNICHON sorting and regulation of GLR channels underlie pollen tube Ca2+ homeostasis[J]. Science, 2018, 360(6388): 533-536. |
[8] | Mou WS, Kao YT, Michard E, et al. Ethylene-independent signaling by the ethylene precursor ACC in Arabidopsis ovular pollen tube attraction[J]. Nat Commun, 2020, 11(1): 4082. |
[9] | Green MN, Gangwar SP, Michard E, et al. Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3.4[J]. Mol Cell, 2021, 81(15): 3216-3226.e8. |
[10] | Alfieri A, Doccula FG, Pederzoli R, et al. The structural bases for agonist diversity in an Arabidopsis thaliana glutamate receptor-like channel[J]. Proc Natl Acad Sci U S A, 2020, 117(1): 752-760. |
[11] |
Gangwar SP, Green MN, Michard E, et al. Structure of the Arabidopsis glutamate receptor-like channel GLR3.2 ligand-binding domain[J]. Structure, 2021, 29(2): 161-169.e4.
doi: 10.1016/j.str.2020.09.006 pmid: 33027636 |
[12] | Shao QL, Gao QF, Lhamo D, et al. Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis[J]. Sci Signal, 2020, 13(640): eaba1453. |
[13] |
何明洁, 孙伊辰, 程晓园, 等. 植物谷氨酸受体的研究进展[J]. 植物学报, 2016, 51(6): 827-840.
doi: 10.11983/CBB15212 |
He MJ, Sun YC, Cheng XY, et al. Current research advances on glutamate receptors(GLRs)in plants[J]. Chin Bull Bot, 2016, 51(6): 827-840. | |
[14] | Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: what else![J]. Curr Opin Plant Biol, 2022, 68: 102253. |
[15] | Yu B, Liu N, Tang SQ, et al. Roles of glutamate receptor-like channels(GLRs)in plant growth and response to environmental stimuli[J]. Plants, 2022, 11(24): 3450. |
[16] | Ahmed I, Kumar A, Bheri M, et al. Glutamate receptor like channels: emerging players in calcium mediated signaling in plants[J]. Int J Biol Macromol, 2023, 234: 123522. |
[17] |
Kwaaitaal M, Huisman R, Maintz J, et al. Ionotropic glutamate receptor(iGluR)-like channels mediate MAMP-induced calcium influx in Arabidopsis thaliana[J]. Biochem J, 2011, 440(3): 355-365.
doi: 10.1042/BJ20111112 pmid: 21848515 |
[18] | Weiland M, Mancuso S, Baluska F. Signalling via glutamate and GLRs in Arabidopsis thaliana[J]. Funct Plant Biol, 2015, 43(1): 1-25. |
[19] | Manzoor H, Kelloniemi J, Chiltz A, et al. Involvement of the glutamate receptor AtGLR3.3 in plant defense signaling and resistance to Hyaloperonospora arabidopsidis[J]. Plant J, 2013, 76(3): 466-480. |
[20] |
Grenzi M, Bonza MC, Alfieri A, et al. Structural insights into long-distance signal transduction pathways mediated by plant glutamate receptor-like channels[J]. New Phytol, 2021, 229(3): 1261-1267.
doi: 10.1111/nph.17034 pmid: 33107608 |
[21] | Kang S, Kim HB, Lee H, et al. Overexpression in Arabidopsis of a plasma membrane-targeting glutamate receptor from small radish increases glutamate-mediated Ca2+ influx and delays fungal infection[J]. Mol Cells, 2006, 21(3): 418-427. |
[22] | Tapken D, Anschütz U, Liu LH, et al. A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids[J]. Sci Signal, 2013, 6(279): ra47. |
[23] | Grenzi M, Buratti S, Parmagnani AS, et al. Long-distance turgor pressure changes induce local activation of plant glutamate receptor-like channels[J]. Curr Biol, 2023, 33(6): 1019-1035.e8. |
[24] |
Lu W, Shi Y, Jackson AC, et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach[J]. Neuron, 2009, 62(2): 254-268.
doi: 10.1016/j.neuron.2009.02.027 pmid: 19409270 |
[25] |
Mayer ML. Emerging models of glutamate receptor ion channel structure and function[J]. Structure, 2011, 19(10): 1370-1380.
doi: 10.1016/j.str.2011.08.009 pmid: 22000510 |
[26] |
Chiu J, DeSalle R, Lam HM, et al. Molecular evolution of glutamate receptors: a primitive signaling mechanism that existed before plants and animals diverged[J]. Mol Biol Evol, 1999, 16(6): 826-838.
pmid: 10368960 |
[27] |
Wollmuth LP, Sobolevsky AI. Structure and gating of the glutamate receptor ion channel[J]. Trends Neurosci, 2004, 27(6): 321-328.
pmid: 15165736 |
[28] |
Lu W, Roche KW. Posttranslational regulation of AMPA receptor trafficking and function[J]. Curr Opin Neurobiol, 2012, 22(3): 470-479.
doi: 10.1016/j.conb.2011.09.008 pmid: 22000952 |
[29] |
Wu Q, Stolz S, Kumari A, et al. The carboxy-terminal tail of GLR3.3 is essential for wound-response electrical signaling[J]. New Phytol, 2022, 236(6): 2189-2201.
doi: 10.1111/nph.18475 pmid: 36089902 |
[30] | Maricq AV, Peckol E, Driscoll M, et al. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor[J]. Nature, 1995, 378(6552): 78-81. |
[31] | Chiu JC, Brenner ED, DeSalle R, et al. Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana[J]. Mol Biol Evol, 2002, 19(7): 1066-1082. |
[32] | Ger MF, Rendon G, Tilson JL, et al. Domain-based identification and analysis of glutamate receptor ion channels and their relatives in prokaryotes[J]. PLoS One, 2010, 5(10): e12827. |
[33] | Ramos-Vicente D, Ji J, Gratacòs-Batlle E, et al. Metazoan evolution of glutamate receptors reveals unreported phylogenetic groups and divergent lineage-specific events[J]. eLife, 2018, 7: e35774. |
[34] |
Wo ZG, Oswald RE. Unraveling the modular design of glutamate-gated ion channels[J]. Trends Neurosci, 1995, 18(4): 161-168.
pmid: 7539962 |
[35] | Armstrong N, Sun Y, Chen GQ, et al. Structure of a glutamate-receptor ligand-binding core in complex with kainate[J]. Nature, 1998, 395(6705): 913-917. |
[36] | Wudick MM, Michard E, Oliveira Nunes C, et al. Comparing plant and animal glutamate receptors: common traits but different fates?[J]. J Exp Bot, 2018, 69(17): 4151-4163. |
[37] |
Chen JQ, Jing YH, Zhang XY, et al. Evolutionary and expression analysis provides evidence for the plant glutamate-like receptors family is involved in woody growth-related function[J]. Sci Rep, 2016, 6: 32013.
doi: 10.1038/srep32013 pmid: 27554066 |
[38] | Li XR, Zhu TH, Wang XY, et al. Genome-wide identification of glutamate receptor-like gene family in soybean[J]. Heliyon, 2023, 9(11): e21655. |
[39] | Sun HH, Liu RC, Qi YT, et al. Genome-wide exploration of the grape GLR gene family and differential responses of VvGLR3.1 and VvGLR3.2 to low temperature and salt stress[J]. Phyton, 2024, 93(3): 533-549. |
[40] |
Ni J, Yu ZM, Du GK, et al. Heterologous expression and functional analysis of rice GLUTAMATE RECEPTOR-LIKE family indicates its role in glutamate triggered calcium flux in rice roots[J]. Rice, 2016, 9(1): 9.
doi: 10.1186/s12284-016-0081-x pmid: 26956369 |
[41] |
Rajjou L, Duval M, Gallardo K, et al. Seed germination and vigor[J]. Annu Rev Plant Biol, 2012, 63: 507-533.
doi: 10.1146/annurev-arplant-042811-105550 pmid: 22136565 |
[42] | Finkelstein RR, Gampala SSL, Rock CD. Abscisic acid signaling in seeds and seedlings[J]. Plant Cell, 2002, 14(Suppl): S15-S45. |
[43] | Kang JM, Mehta S, Turano FJ. The putative glutamate receptor 1.1(AtGLR1.1)in Arabidopsis thaliana regulates abscisic acid biosynthesis and signaling to control development and water loss[J]. Plant Cell Physiol, 2004, 45(10): 1380-1389. |
[44] | Kong DD, Ju CL, Parihar A, et al. Arabidopsis glutamate receptor homolog3.5 modulates cytosolic Ca2+ level to counteract effect of abscisic acid in seed germination[J]. Plant Physiol, 2015, 167(4): 1630-1642. |
[45] | Kong DD, Hu HC, Okuma E, et al. L-met activates Arabidopsis GLR Ca2+ channels upstream of ROS production and regulates stomatal movement[J]. Cell Rep, 2016, 17(10): 2553-2561. |
[46] |
Li J, Zhu SH, Song XW, et al. A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem[J]. Plant Cell, 2006, 18(2): 340-349.
doi: 10.1105/tpc.105.037713 pmid: 16377757 |
[47] | Vincill ED, Clarin AE, Molenda JN, et al. Interacting glutamate receptor-like proteins in phloem regulate lateral root initiation in Arabidopsis[J]. Plant Cell, 2013, 25(4): 1304-1313. |
[48] | Singh SK, Chien CT, Chang IF. The Arabidopsis glutamate receptor-like gene GLR3.6 controls root development by repressing the Kip-related protein gene KRP4[J]. J Exp Bot, 2016, 67(6): 1853-1869. |
[49] |
Michard E, Lima PT, Borges F, et al. Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine[J]. Science, 2011, 332(6028): 434-437.
doi: 10.1126/science.1201101 pmid: 21415319 |
[50] |
Schwenk J, Harmel N, Zolles G, et al. Functional proteomics identify cornichon proteins as auxiliary subunits of AMPA receptors[J]. Science, 2009, 323(5919): 1313-1319.
doi: 10.1126/science.1167852 pmid: 19265014 |
[51] |
Brockie PJ, Jensen M, Mellem JE, et al. Cornichons control ER export of AMPA receptors to regulate synaptic excitability[J]. Neuron, 2013, 80(1): 129-142.
doi: 10.1016/j.neuron.2013.07.028 pmid: 24094107 |
[52] |
Casson SA, Hetherington AM. Environmental regulation of stomatal development[J]. Curr Opin Plant Biol, 2010, 13(1): 90-95.
doi: 10.1016/j.pbi.2009.08.005 pmid: 19781980 |
[53] | Hamilton DW, Hills A, Kohler B, et al. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid[J]. Proc Natl Acad Sci U S A, 2000, 97(9): 4967-4972. |
[54] | Pei ZM, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells[J]. Nature, 2000, 406(6797): 731-734. |
[55] | Kwak JM, Mori IC, Pei ZM, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO J, 2003, 22(11): 2623-2633. |
[56] |
León J, Rojo E, Sánchez-Serrano JJ. Wound signalling in plants[J]. J Exp Bot, 2001, 52(354): 1-9.
doi: 10.1093/jexbot/52.354.1 pmid: 11181708 |
[57] |
Ikeuchi M, Favero DS, Sakamoto Y, et al. Molecular mechanisms of plant regeneration[J]. Annu Rev Plant Biol, 2019, 70: 377-406.
doi: 10.1146/annurev-arplant-050718-100434 pmid: 30786238 |
[58] |
Rymen B, Kawamura A, Lambolez A, et al. Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis[J]. Commun Biol, 2019, 2: 404.
doi: 10.1038/s42003-019-0646-5 pmid: 31701032 |
[59] |
Hernández-Coronado M, Dias Araujo PC, Ip PL, et al. Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense[J]. Dev Cell, 2022, 57(4): 451-465.e6.
doi: 10.1016/j.devcel.2022.01.013 pmid: 35148835 |
[60] | Yu B, Wu Q, Li XX, et al. GLUTAMATE RECEPTOR-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice(Oryza sativa)[J]. New Phytol, 2022, 233(3): 1238-1256. |
[61] |
Farmer EE, Gao YQ, Lenzoni G, et al. Wound- and mechanostimulated electrical signals control hormone responses[J]. New Phytol, 2020, 227(4): 1037-1050.
doi: 10.1111/nph.16646 pmid: 32392391 |
[62] | Kloth KJ, Dicke M. Rapid systemic responses to herbivory[J]. Curr Opin Plant Biol, 2022, 68: 102242. |
[63] | Mousavi SAR, Chauvin A, Pascaud F, et al. GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463): 422-426. |
[64] | Nguyen CT, Kurenda A, Stolz S, et al. Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant[J]. Proc Natl Acad Sci U S A, 2018, 115(40): 10178-10183. |
[65] |
Toyota M, Spencer D, Sawai-Toyota S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112-1115.
doi: 10.1126/science.aat7744 pmid: 30213912 |
[66] | Vincent TR, Avramova M, Canham J, et al. Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding[J]. Plant Cell, 2017, 29(6): 1460-1479. |
[67] |
Wang GT, Hu CY, Zhou J, et al. Systemic root-shoot signaling drives jasmonate-based root defense against nematodes[J]. Curr Biol, 2019, 29(20): 3430-3438.e4.
doi: S0960-9822(19)31099-1 pmid: 31588001 |
[68] | Hu CY, Duan SQ, Zhou J, et al. Characteristics of herbivory/wound-elicited electrical signal transduction in tomato[J]. Front Agr Sci Eng, 2021: 8(2):292-301. |
[69] | Hu CY, Wu SF, Li JJ, et al. Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato[J]. New Phytol, 2022, 236(5): 1796-1808. |
[70] |
Hedrich R, Salvador-Recatalà V, Dreyer I. Electrical wiring and long-distance plant communication[J]. Trends Plant Sci, 2016, 21(5): 376-387.
doi: S1360-1385(16)00032-7 pmid: 26880317 |
[71] | Choi WG, Hilleary R, Swanson SJ, et al. Rapid, long-distance electrical and calcium signaling in plants[J]. Annu Rev Plant Biol, 2016, 67: 287-307. |
[72] | Barbosa-Caro JC, Wudick MM. Revisiting plant electric signaling: challenging an old phenomenon with novel discoveries[J]. Curr Opin Plant Biol, 2024, 79: 102528. |
[73] | Li F, Wang J, Ma CL, et al. Glutamate receptor-like channel3.3 is involved in mediating glutathione-triggered cytosolic calcium transients, transcriptional changes, and innate immunity responses in Arabidopsis[J]. Plant Physiol, 2013, 162(3): 1497-1509. |
[74] |
Bjornson M, Pimprikar P, Nürnberger T, et al. The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity[J]. Nat Plants, 2021, 7(5): 579-586.
doi: 10.1038/s41477-021-00874-5 pmid: 33723429 |
[75] |
朱金成, 杨洋, 娄慧, 等. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419 |
Zhu JC, Yang Y, Lou H, et al. Regulation of Fusarium wilt resistance in cotton by exogenous melatonin[J]. Biotechnol Bull, 2023, 39(1): 243-252. | |
[76] | Liu SM, Zhang XJ, Xiao SH, et al. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum[J]. Adv Sci, 2021, 8(7): 2002723. |
[77] | Feng SX, Pan CZ, Ding ST, et al. The glutamate receptor plays a role in defense against Botrytis cinerea through electrical signaling in tomato[J]. Appl Sci, 2021, 11(23): 11217. |
[78] |
Cheng Y, Zhang XX, Sun TY, et al. Glutamate receptor homolog3.4 is involved in regulation of seed germination under salt stress in Arabidopsis[J]. Plant Cell Physiol, 2018, 59(5): 978-988.
doi: 10.1093/pcp/pcy034 pmid: 29432559 |
[79] | Wang PH, Lee CG, Lin YS, et al. The glutamate receptor-like protein GLR3.7 interacts with 14-3-3ω and participates in salt stress response in Arabidopsis thaliana[J]. Front Plant Sci, 2019, 10: 1169. |
[80] | Silamparasan D, Chang IF, Jinn TL. Calcium-dependent protein kinase CDPK16 phosphorylates serine-856 of glutamate receptor-like GLR3.6 protein leading to salt-responsive root growth in Arabidopsis[J]. Front Plant Sci, 2023, 14: 1093472. |
[81] | Wan SQ, Wang WD, Zhou TS, et al. Transcriptomic analysis reveals the molecular mechanisms of Camellia sinensis in response to salt stress[J]. Plant Growth Regul, 2018, 84(3): 481-492. |
[82] | Zeng HQ, Zhao BQ, Wu HC, et al. Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean[J]. Agronomy, 2020, 10(10): 1539. |
[83] | Dugasa MT, Feng X, Wang NH, et al. Comparative transcriptome and tolerance mechanism analysis in the two contrasting wheat(Triticum aestivum L.) cultivars in response to drought and salinity stresses[J]. Plant Growth Regul, 2021, 94(1): 101-114. |
[84] |
Lu GH, Wang XP, Liu JH, et al. Application of T-DNA activation tagging to identify glutamate receptor-like genes that enhance drought tolerance in plants[J]. Plant Cell Rep, 2014, 33(4): 617-631.
doi: 10.1007/s00299-014-1586-7 pmid: 24682459 |
[85] | Philippe F, Verdu I, Morère-Le Paven MC, et al. Involvement of Medicago truncatula glutamate receptor-like channels in nitric oxide production under short-term water deficit stress[J]. J Plant Physiol, 2019, 236: 1-6. |
[86] | Li HZ, Jiang XC, Lv XZ, et al. Tomato GLR3.3 and GLR3.5 mediate cold acclimation-induced chilling tolerance by regulating apoplastic H2O2 production and redox homeostasis[J]. Plant Cell Environ, 2019, 42(12): 3326-3339. |
[87] | Li ZG, Ye XY, Qiu XM. Glutamate signaling enhances the heat tolerance of maize seedlings by plant glutamate receptor-like channels-mediated calcium signaling[J]. Protoplasma, 2019, 256(4): 1165-1169. |
[88] | Fichman Y, Myers RJ Jr, Grant DG, et al. Plasmodesmata-localized proteins and ROS orchestrate light-induced rapid systemic signaling in Arabidopsis[J]. Sci Signal, 2021, 14(671): eabf0322. |
[89] | 刘淑红. 邯郸地区棉花枯萎病的发生及防治措施[J]. 农业科技通讯, 2019(9): 301-302. |
Liu SH. Occurrence and control measures of cotton wilt in Handan area[J]. Bull Agric Sci Technol, 2019(9): 301-302. | |
[90] | Yan C, Gao QF, Yang M, et al. Ca2+/calmodulin-mediated desensitization of glutamate receptors shapes plant systemic wound signalling and anti-herbivore defence[J]. Nat Plants, 2024, 10(1): 145-160. |
[1] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[2] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[3] | 李勇慧, 鲍星星, 段一珂, 赵运霞, 于相丽, 陈尧, 张延召. 灵宝杜鹃bZIP家族全基因组鉴定及表达特征分析[J]. 生物技术通报, 2024, 40(8): 186-198. |
[4] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[5] | 刘丹丹, 王雷刚, 孙明慧, 焦小雨, 吴琼, 王文杰. 茶树海藻糖-6-磷酸合成酶(TPS)基因家族鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 152-163. |
[6] | 余纽, 柳帆, 杨锦昌. 油楠SgTPS7的克隆及其在萜类生物合成和非生物胁迫中的功能[J]. 生物技术通报, 2024, 40(8): 164-173. |
[7] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
[8] | 胡雅丹, 伍国强, 刘晨, 魏明. MYB转录因子在调控植物响应逆境胁迫中的作用[J]. 生物技术通报, 2024, 40(6): 5-22. |
[9] | 常雪瑞, 王田田, 王静. 辣椒E2基因家族的鉴定及分析[J]. 生物技术通报, 2024, 40(6): 238-250. |
[10] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[11] | 杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190. |
[12] | 郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11. |
[13] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[14] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[15] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||