生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 277-284.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0388
杨冰洁(), 袁晓霞, 高梦哲, 申奥龙, 李华, 冀照君()
收稿日期:
2024-04-24
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
冀照君,男,博士,教授,研究方向:微生物学;E-mail: jzj808@163.com作者简介:
杨冰洁,女,硕士研究生,研究方向:微生物学;E-mail: ybj000903@163.com
基金资助:
YANG Bing-jie(), YUAN Xiao-xia, GAO Meng-zhe, SHEN Ao-long, LI Hua, JI Zhao-jun()
Received:
2024-04-24
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 Rhizobium yanglingense CCBAU 01603可与豆科锦鸡儿属植物形成高效固氮根瘤,前期研究在含碱培养基中连续进化500代得到进化菌株,发现与其他进化菌株相比,Alk_40中基因envZ、iscS、asnC发生特异SNPs变化导致胞外多糖产量大幅降低,进而探究关键基因调控根瘤菌胞外多糖产量和环境适应性。【方法】 采用同源重组法构建根瘤菌envZ、iscS、asnC单基因缺失突变株,测定突变株的胞外多糖产量和不同环境条件下的生长情况。【结果】 根瘤菌envZ、iscS、asnC基因缺失突变株在YMA培养基中胞外多糖产量显著下降,酸性环境适应性降低,65℃热处理的耐受能力减弱,且胞外多糖产量与根瘤菌耐酸性和耐热性具有一定相关性;根瘤菌envZ和asnC基因缺失突变株对NaCl十分敏感,在含NaCl培养基中的生长繁殖严重受限,在弱碱性环境中适应能力显著降低。【结论】 根瘤菌胞外多糖产量受基因iscS、envZ、asnC的调控。
杨冰洁, 袁晓霞, 高梦哲, 申奥龙, 李华, 冀照君. 基因envZ、iscS、asnC调控根瘤菌胞外多糖产量和环境适应性[J]. 生物技术通报, 2024, 40(11): 277-284.
YANG Bing-jie, YUAN Xiao-xia, GAO Meng-zhe, SHEN Ao-long, LI Hua, JI Zhao-jun. Exopolysaccharide Yield and Environmental Adaptation of Rhizobia Regulated by Gene envZ, iscS and asnC[J]. Biotechnology Bulletin, 2024, 40(11): 277-284.
菌株 Strain | 特征 Description | 来源 Source |
---|---|---|
R. yanglingense CCBAU 01603 | 野生型菌株 Wild-type strain NAr | 实验室保藏 Preserved in Lab |
Alk_40 | CCBAU 01603的进化菌株 Evolved clone of CCBAU 01603 | 实验室保藏 Preserved in Lab |
ΔenvZ | envZ基因敲除突变株 Gene envZ deletion mutant NAr | 已构建 Established in Lab |
ΔiscS | iscS基因敲除突变株 Gene iscS deletion mutant NAr | 已构建 Established in Lab |
ΔasnC | asnC基因敲除突变株 Gene asnC deletion mutant NAr | 已构建 Established in Lab |
表1 供试菌株列表
Table 1 Strains in this study
菌株 Strain | 特征 Description | 来源 Source |
---|---|---|
R. yanglingense CCBAU 01603 | 野生型菌株 Wild-type strain NAr | 实验室保藏 Preserved in Lab |
Alk_40 | CCBAU 01603的进化菌株 Evolved clone of CCBAU 01603 | 实验室保藏 Preserved in Lab |
ΔenvZ | envZ基因敲除突变株 Gene envZ deletion mutant NAr | 已构建 Established in Lab |
ΔiscS | iscS基因敲除突变株 Gene iscS deletion mutant NAr | 已构建 Established in Lab |
ΔasnC | asnC基因敲除突变株 Gene asnC deletion mutant NAr | 已构建 Established in Lab |
图1 R. yanglingense CCBAU01603与进化菌株Alk_40关键基因序列及翻译的氨基酸序列比对分析 A为envZ基因序列及氨基酸组成比对结果;B为iscS基因序列及氨基酸组成比对结果;C为asnC基因序列及氨基酸组成比对结果
Fig. 1 Comparative analysis of key gene sequences and translated amino acid sequences of R. yanglingense CCBAU01603 and evolved Alk_40 A is from the comparison of the envZ gene sequence and amino acid composition; B is from the comparison of the iscS gene sequence and amino acid composition; C is from the comparison of the asnC gene sequence and amino acid composition
图3 根瘤菌胞外多糖产量
Fig. 3 Exopolysaccharide yield among different rhizobia *: 0.01<P≤0.05; **: 0.001<P≤0.01; ***: 0.0001<P≤0.001; ****: P ≤0.0001, the same below
图4 根瘤菌在含不同浓度NaCl培养基中生长情况 A:含0.1% NaCl的液体培养基;B:含0.2% NaCl的液体培养基;C:含0.3% NaCl的液体培养基;D:含0.4% NaCl的液体培养基
Fig. 4 Growth of rhizobia in the media with different concentrations of NaCl A: Liquid medium containing 0.1% NaCl. B: Liquid medium containing 0.2% NaCl. C: Liquid medium containing 0.3% NaCl. D: Liquid medium containing 0.4% NaCl
环境条件Environmental conditions | 皮尔逊相关系数Pearson’s correlation coefficient | 显著性(双尾) Sig(2-tailed)(P) | |
---|---|---|---|
盐浓度NaCl concentrations | 0.1% | 0.734ns | 0.158 |
0.2% | 0.613ns | 0.271 | |
0.3% | 0.508ns | 0.382 | |
0.4% | -0.211ns | 0.733 | |
pH 值 pH Value | 4.02 | 0.981** | 0.003 |
5.01 | -0.087ns | 0.89 | |
8.99 | 0.389ns | 0.517 | |
9.98 | 0.138ns | 0.825 | |
热处理温度Heat treatment temperature | 28℃ | 0.976** | 0.004 |
37℃ | 0.840ns | 0.075 | |
65℃ | 0.979** | 0.004 |
表2 胞外多糖产量与菌液OD600值的相关性分析
Table 2 Correlation between exopolysaccharide yield and OD600 values
环境条件Environmental conditions | 皮尔逊相关系数Pearson’s correlation coefficient | 显著性(双尾) Sig(2-tailed)(P) | |
---|---|---|---|
盐浓度NaCl concentrations | 0.1% | 0.734ns | 0.158 |
0.2% | 0.613ns | 0.271 | |
0.3% | 0.508ns | 0.382 | |
0.4% | -0.211ns | 0.733 | |
pH 值 pH Value | 4.02 | 0.981** | 0.003 |
5.01 | -0.087ns | 0.89 | |
8.99 | 0.389ns | 0.517 | |
9.98 | 0.138ns | 0.825 | |
热处理温度Heat treatment temperature | 28℃ | 0.976** | 0.004 |
37℃ | 0.840ns | 0.075 | |
65℃ | 0.979** | 0.004 |
图5 根瘤菌在不同pH值的培养基中生长情况 A:pH=4.02的液体培养基;B:pH=5.01的液体培养基;C:pH=6.99的液体培养基;D:pH=8.99的液体培养基;E:pH=9.98的液体培养基
Fig. 5 Growth of rhizobia in the medium with different pH A: Liquid medium with pH=4.02; B: liquid medium with pH=5.01; C: liquid medium with pH=6.99; D: liquid medium with pH=8.99; E: liquid medium with pH=9.98
图6 不同温度处理的根瘤菌生长情况 A:28℃处理10 min的阴性对照组;B:37℃处理10 min;C:65℃处理10 min
Fig. 6 Growth of rhizobia after treatment at different temperature A: Negative control group treated at 28℃ for 10 min; B: treated at 37℃ for 10 min; C: treated at 65℃ for 10 min
[1] | Ji ZJ, Yan H, Cui QG, et al. Competition between rhizobia under different environmental conditions affects the nodulation of a legume[J]. Syst Appl Microbiol, 2017, 40(2): 114-119. |
[2] | Ji ZJ, Wu ZY, Chen WF, et al. Physiological and symbiotic variation of a long-term evolved Rhizobium strain under alkaline condition[J]. Syst Appl Microbiol, 2020, 43(5): 126125. |
[3] | Hollingsworth RI, Dazzo FB, Hallenga K, et al. The complete structure of the trifoliin A lectin-binding capsular polysaccharide of Rhizobium trifolii 843[J]. Carbohydr Res, 1988, 172(1): 97-112. |
[4] | Palhares Farias T, de Melo Castro E, Marucci Pereira Tangerina M, et al. Rhizobia exopolysaccharides: promising biopolymers for use in the formulation of plant inoculants[J]. Braz J Microbiol, 2022, 53(4): 1843-1856. |
[5] | Park S, Shin Y, Jung S. Structural, rheological properties and antioxidant activities analysis of the exopolysaccharide produced by Rhizobium leguminosarum bv. viciae VF39[J]. Int J Biol Macromol, 2024, 257(Pt 2): 128811. |
[6] | Muszynski A, Laus M, Kijne JW, et al. Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant(exo5)[J]. Glycobiology, 2011, 21(1): 55-68. |
[7] | Janczarek M, Rachwał K, Kopcińska J. Genetic characterization of the Pss region and the role of PssS in exopolysaccharide production and symbiosis of Rhizobium leguminosarum bv. trifolii with clover[J]. Plant Soil, 2015, 396(1): 257-275. |
[8] | Janczarek M. The ros/MucR zinc-finger protein family in bacteria: structure and functions[J]. Int J Mol Sci, 2022, 23(24): 15536. |
[9] | Kenney LJ, Anand GS. EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically[J]. EcoSal Plus, 2020, 9(1): 10.1128/ecosalplus.ESP-10.1128/ecosalplus0001-2019. |
[10] | Fu DD, Wu JM, Wu XY, et al. The two-component system histidine kinase EnvZ contributes to Avian pathogenic Escherichia coli pathogenicity by regulating biofilm formation and stress responses[J]. Poult Sci, 2023, 102(2): 102388. |
[11] | Das M, Sreedharan S, Shee S, et al. Cysteine desulfurase(IscS)-mediated fine-tuning of bioenergetics and SUF expression prevents Mycobacterium tuberculosis hypervirulence[J]. Sci Adv, 2023, 9(50): eadh2858. |
[12] | Yan SQ, Zhen JF, Li YZ, et al. Mycobacterium Lrp/AsnC family transcriptional factor modulates the arginase pathway as both a sensor and a transcriptional repressor[J]. J Genet Genomics, 2021, 48(11): 1020-1031. |
[13] | 刘景煜, 李晨, 肖林刚, 等. 双水相萃取法分离纯化金针菇子实体多糖[J]. 食品与发酵工业, 2017, 43(5): 255-260. |
Liu JY, Li C, Xiao LG, et al. Isolation and purification of aqueous two-phase extraction of polysaccharides from Flammulina velutipes[J]. Food Ferment Ind, 2017, 43(5): 255-260. | |
[14] | Lee D, Lee YM, Hye Shin S, et al. A simple protein histidine kinase activity assay for high-throughput inhibitor screening[J]. Bioorg Chem, 2023, 130: 106232. |
[15] | Park H, Saha SK, Inouye M. Two-domain reconstitution of a functional protein histidine kinase[J]. Proc Natl Acad Sci USA, 1998, 95(12): 6728-6732. |
[16] | Tomomori C, Tanaka T, Dutta R, et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ[J]. Nat Struct Biol, 1999, 6(8): 729-734. |
[17] | Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471-499. |
[18] | Fujishiro T, Nakamura R, Kunichika K, et al. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis[J]. Biophys Physicobiol, 2022, 19: 1-18. |
[19] | Nogales J, Campos R, BenAbdelkhalek H, et al. Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris[J]. Mol Plant Microbe Interact, 2002, 15(3): 225-232. |
[20] | Modrzejewska M, Kawalek A, Bartosik AA. The lrp/AsnC-type regulator PA2577 controls the EamA-like transporter gene PA2576 in Pseudomonas aeruginosa[J]. Int J Mol Sci, 2021, 22(24): 13340. |
[21] | Thaw P, Sedelnikova SE, Muranova T, et al. Structural insight into gene transcriptional regulation and effector binding by the Lrp/AsnC family[J]. Nucleic Acids Res, 2006, 34(5): 1439-1449. |
[22] | Acosta-Jurado S, Fuentes-Romero F, Ruiz-Sainz JE, et al. Rhizobial exopolysaccharides: genetic regulation of their synthesis and relevance in symbiosis with legumes[J]. Int J Mol Sci, 2021, 22(12): 6233. |
[23] | Laus MC, Logman TJ, Van Brussel AAN, et al. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra[J]. J Bacteriol, 2004, 186(19): 6617-6625. |
[24] | Sánchez-Andújar B, Coronado C, Philip-Hollingsworth S, et al. Structure and role in symbiosis of the exoB gene of Rhizobium leguminosarum bv trifolii[J]. Mol Gen Genet, 1997, 255(2): 131-140. |
[25] | Marczak M, Żebracki K, Koper P, et al. A new face of the old gene: deletion of the PssA, encoding monotopic inner membrane phosphoglycosyl transferase in Rhizobium leguminosarum, leads to diverse phenotypes that could be attributable to downstream effects of the lack of exopolysaccharide[J]. Int J Mol Sci, 2023, 24(2): 1035. |
[26] | Wisniewski-Dyé F, Downie JA. Quorum-sensing in Rhizobium[J]. Antonie Van Leeuwenhoek, 2002, 81(1-4): 397-407. |
[27] | Ji YY, Zhang BL, Zhang P, et al. Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs[J]. ISME J, 2023, 17(3): 417-431. |
[28] | Hoang HH, Becker A, González JE. The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression[J]. J Bacteriol, 2004, 186(16): 5460-5472. |
[29] | Bustamante JA, Ceron JS, Gao IT, et al. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts[J]. PLoS Genet, 2023, 19(10): e1010776. |
[30] | Gao MJ, Liu ZL, Zhao ZS, et al. Exopolysaccharide synthesis repressor genes(exoR and exoX)related to curdlan biosynthesis by Agrobacterium sp[J]. Int J Biol Macromol, 2022, 205: 193-202. |
[31] | Morcillo RJL, Manzanera M. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance[J]. Metabolites, 2021, 11(6): 337. |
[1] | 常海霞, 李明源, 麦日艳古·亚生, 周茜, 王继莲. 产胞外多糖多功能促生菌的筛选鉴定及促生评价[J]. 生物技术通报, 2024, 40(3): 273-285. |
[2] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[3] | 袁存霞, 李艳楠, 张肖冲, 杨瑞, 刘建利, 李靖宇. As3+胁迫下Bacillus sp. ZJS3菌株的生理生化响应特性[J]. 生物技术通报, 2022, 38(7): 236-246. |
[4] | 王晓丽, 秦杰, 王敏, 王利祥, 杜维俊. 山西大豆根瘤菌的分离、鉴定及共生匹配性筛选[J]. 生物技术通报, 2022, 38(3): 59-68. |
[5] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[6] | 王珊珊, 孙敏, 王永霞, 李惟栋, 韩春超. 鸡腿蘑胞外多糖的形貌结构及分子量动态变化与抗氧化的相关性研究[J]. 生物技术通报, 2021, 37(2): 129-137. |
[7] | 范敏, 王丽宁. 等离子体诱变选育高产胞外多糖花脸香蘑菌株[J]. 生物技术通报, 2021, 37(11): 119-124. |
[8] | 焦健, 刘克寒, 田长富. 根瘤菌铁转运代谢及其调控机制研究进展[J]. 生物技术通报, 2019, 35(10): 7-17. |
[9] | 陈雪莲, 江高飞, 钟增涛. 基因水平转移在根瘤菌进化中的研究进展[J]. 生物技术通报, 2019, 35(10): 18-24. |
[10] | 董汝, 曹扬荣. 豆科植物-根瘤菌共生固氮的免疫调控机制[J]. 生物技术通报, 2019, 35(10): 25-33. |
[11] | 林丽, 李杨瑞, 安千里. 甘蔗联合固氮的回顾与展望[J]. 生物技术通报, 2019, 35(10): 46-56. |
[12] | 邓超, 杜秀娟, 黄涛, 郭英, 李炳学, 卜宁. 碳氮比对固氮菌株WN-F合成胞外多糖的影响[J]. 生物技术通报, 2018, 34(3): 194-199. |
[13] | 李彬, 陈向楠, 张建法, 王世明. 产胞外多糖菌株的筛选及胞外多糖结构分析[J]. 生物技术通报, 2016, 32(5): 165-171. |
[14] | 龙寒,陈盛峰,陈佳,杨迪,李晓燕,黄玉油,何秀苗,禤金彩. 一株产胞外多糖海洋弧菌的分离鉴定及其多糖抗肿瘤活性初步研究[J]. 生物技术通报, 2016, 32(12): 166-171. |
[15] | 辛跃强, 梁荣荣, 王瑞明. 低聚半乳糖对肠道益生菌产胞外多糖作用的研究[J]. 生物技术通报, 2015, 31(6): 144-150. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||