生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 277-288.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0918
王楠1,2(), 廖永琴1,2, 施竹凤2, 申云鑫1,2, 杨童雨1,2, 冯路遥2, 矣小鹏1,2, 唐加菜1,2, 陈齐斌1(), 杨佩文2()
收稿日期:
2023-09-25
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
杨佩文,男,博士,研究员,研究方向:植物病害生物防治;E-mail: 398036877@qq.com;作者简介:
王楠,女,硕士研究生,研究方向:微生物资源的开发与利用;E-mail: 1164513193@qq.com
基金资助:
WANG Nan1,2(), LIAO Yong-qin1,2, SHI Zhu-feng2, SHEN Yun-xin1,2, YANG Tong-yu1,2, FENG Lu-yao2, YI Xiao-peng1,2, TANG Jia-cai1,2, CHEN Qi-bin1(), YANG Pei-wen2()
Received:
2023-09-25
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】挖掘无量山国家自然保护区潜在的高活性微生物菌株,旨在为农业绿色投入品研发提供高效的菌种资源。【方法】以番茄枯萎病菌(Fusarium oxysporum)为靶标筛选高拮抗活性菌株,观察对菌丝生长的影响,测定对孢子萌发的抑制作用;检测脂肽类化合物合成基因以及菌株体外产酶、解磷、解钾、固氮及产铁载体能力;结合形态学、生理生化特征和16S rRNA、gyrA、rpoB基因进行菌株鉴定,室内盆栽试验验证防病和促生效果。【结果】分离筛选获得153株可培养细菌,其中,菌株SH-53、N4471和N9456抑菌效果分别为92.35%、87.29%和88.47%,能抑制病原菌菌丝生长和分生孢子萌发,且对多种病原菌表现出良好拮抗活性。3株功能菌均具有溶锌、产淀粉酶和蛋白酶的能力,菌株SH-53和N4471还具有解磷、固氮、分泌纤维素酶以及产铁载体能力。3个功能菌基因组中均含有srfA、fenA、ituA、ituC、ituD、bymC等脂肽类化合物合成基因。经鉴定菌株SH-53为解淀粉芽孢杆菌(Bacillus amyloliquefaciens),N4471为卡式芽孢杆菌(B. cabrialesii),N9456为暹罗芽孢杆菌(B. siamensis)。盆栽试验结果表明,3株功能菌防效分别为84.66%、54.96%和59.74%,对番茄幼苗的株高、茎粗、根长等农艺性状均具有较好促进作用。【结论】3个菌株具有高效、广谱的抑菌活性,具有多样化的生物活性,作为高效的微生物资源具有广阔的应用前景。
王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288.
WANG Nan, LIAO Yong-qin, SHI Zhu-feng, SHEN Yun-xin, YANG Tong-yu, FENG Lu-yao, YI Xiao-peng, TANG Jia-cai, CHEN Qi-bin, YANG Pei-wen. Identification of Three Strains of Bacillus from the Forest Soil of Wuliang Mountain and Mining of Their Bioactivities[J]. Biotechnology Bulletin, 2024, 40(2): 277-288.
培养基种类 Medium category | 配方Formulation/L |
---|---|
马铃薯葡萄糖琼脂培养基 Potato dextrose agar medium(PDA) | 去皮马铃薯200.0 g,葡萄糖20.0 g,琼脂20.0 g,pH自然 |
营养琼脂培养基 Nutrient agar medium(NA) | 牛肉膏5.0 g,蛋白胨10.0 g,氯化钠5.0 g,琼脂20.0 g,pH 7.0 |
LB固体培养基 Luria-Bertani solid medium | 胰蛋白胨10.0 g,酵母提取物5.0 g,氯化钠10.0 g,琼脂20.0 g,pH 7.4 |
营养肉汤培养基 Nutrient broth medium(NB) | 牛肉膏3.0 g,蛋白胨10.0 g,氯化钠5.0 g,pH 7.4 |
水琼脂培养基 Water agar medium | 琼脂20.0 g,pH 7.0 |
解磷选择培养基 Phosphate-solubilizing selection medium | 葡萄糖10.0 g,硫酸铵0.5 g,氯化钠0.3 g,七水合硫酸镁0.3 g,七水合硫酸亚铁0.03 g,四水合硫酸锰0.03 g,氯化钾0.3 g,磷酸钙2.0 g,琼脂17.0 g,pH 7.2-7.4 |
解钾选择培养基 Potassium solution selection medium | 蔗糖5.0 g,葡萄糖5.0 g,硫酸铵0.5 g,酵母膏0.5 g,七水合硫酸镁0.3 g,磷酸氢二钠2.0 g,七水合硫酸亚铁0.03 g,硫酸锰0.03 g,钾长石粉2.0 g,琼脂18.0 g,pH 7.0 |
固氮选择培养基 Nitrogen-fixing selection medium | 磷酸二氢钾0.2 g,硫酸镁0.2 g,氯化钠0.2 g,碳酸钙5.0 g,甘露醇10.0 g,硫酸钙0.1 g,琼脂18.0 g,pH 6.8-7.0 |
酪蛋白选择培养基 | 葡萄糖10.0 g,酵母膏4.0 g,酪蛋白10.0 g,磷酸氢二钾1.0 g,七水合硫酸镁0.2 g,琼脂20.0 g,pH 7.0 |
纤维素培养基 Cellulose medium | 磷酸氢二钾1.0 g,硫酸铵2.0 g,七水合硫酸镁0.5 g,氯化钠0.5 g,微晶纤维素2.0 g,琼脂20.0 g,pH 7.0 |
淀粉选择培养基 Starch selection medium | 可溶性淀粉10.0 g,磷酸氢二钾1.0 g,硫酸镁1.0 g,氯化钠1.0 g,硫酸铵2.0 g,碳酸钙2.0 g,硫酸亚铁0.001 g,氯化锰0.001 g,硫酸锌0.001 g,琼脂20.0 g,pH 7.0-7.4 |
溶锌选择培养基[ Zinc-solubilized selection medium | 氧化锌1.0 g,葡萄糖10.0 g,氯化钾0.2 g、硫酸铵1.0 g,硫酸镁0.2 g,磷酸氢二钾0.1 g,琼脂20.0 g,pH 7.0 |
CAS双层显色培养基[ CAS bilayer chromogenic medium | 底层为5 mL水琼脂培养基(加有2 mL CAS显色液),上层为5 mL的PDA培养基 |
表1 供试培养基成分
Table 1 Composition of test media
培养基种类 Medium category | 配方Formulation/L |
---|---|
马铃薯葡萄糖琼脂培养基 Potato dextrose agar medium(PDA) | 去皮马铃薯200.0 g,葡萄糖20.0 g,琼脂20.0 g,pH自然 |
营养琼脂培养基 Nutrient agar medium(NA) | 牛肉膏5.0 g,蛋白胨10.0 g,氯化钠5.0 g,琼脂20.0 g,pH 7.0 |
LB固体培养基 Luria-Bertani solid medium | 胰蛋白胨10.0 g,酵母提取物5.0 g,氯化钠10.0 g,琼脂20.0 g,pH 7.4 |
营养肉汤培养基 Nutrient broth medium(NB) | 牛肉膏3.0 g,蛋白胨10.0 g,氯化钠5.0 g,pH 7.4 |
水琼脂培养基 Water agar medium | 琼脂20.0 g,pH 7.0 |
解磷选择培养基 Phosphate-solubilizing selection medium | 葡萄糖10.0 g,硫酸铵0.5 g,氯化钠0.3 g,七水合硫酸镁0.3 g,七水合硫酸亚铁0.03 g,四水合硫酸锰0.03 g,氯化钾0.3 g,磷酸钙2.0 g,琼脂17.0 g,pH 7.2-7.4 |
解钾选择培养基 Potassium solution selection medium | 蔗糖5.0 g,葡萄糖5.0 g,硫酸铵0.5 g,酵母膏0.5 g,七水合硫酸镁0.3 g,磷酸氢二钠2.0 g,七水合硫酸亚铁0.03 g,硫酸锰0.03 g,钾长石粉2.0 g,琼脂18.0 g,pH 7.0 |
固氮选择培养基 Nitrogen-fixing selection medium | 磷酸二氢钾0.2 g,硫酸镁0.2 g,氯化钠0.2 g,碳酸钙5.0 g,甘露醇10.0 g,硫酸钙0.1 g,琼脂18.0 g,pH 6.8-7.0 |
酪蛋白选择培养基 | 葡萄糖10.0 g,酵母膏4.0 g,酪蛋白10.0 g,磷酸氢二钾1.0 g,七水合硫酸镁0.2 g,琼脂20.0 g,pH 7.0 |
纤维素培养基 Cellulose medium | 磷酸氢二钾1.0 g,硫酸铵2.0 g,七水合硫酸镁0.5 g,氯化钠0.5 g,微晶纤维素2.0 g,琼脂20.0 g,pH 7.0 |
淀粉选择培养基 Starch selection medium | 可溶性淀粉10.0 g,磷酸氢二钾1.0 g,硫酸镁1.0 g,氯化钠1.0 g,硫酸铵2.0 g,碳酸钙2.0 g,硫酸亚铁0.001 g,氯化锰0.001 g,硫酸锌0.001 g,琼脂20.0 g,pH 7.0-7.4 |
溶锌选择培养基[ Zinc-solubilized selection medium | 氧化锌1.0 g,葡萄糖10.0 g,氯化钾0.2 g、硫酸铵1.0 g,硫酸镁0.2 g,磷酸氢二钾0.1 g,琼脂20.0 g,pH 7.0 |
CAS双层显色培养基[ CAS bilayer chromogenic medium | 底层为5 mL水琼脂培养基(加有2 mL CAS显色液),上层为5 mL的PDA培养基 |
种类Category | 靶基因 Target gene | 引物序列 Primer sequence(5'-3') | 扩增长度 Amplification size/bp |
---|---|---|---|
Surfactins | Sfp | F:ATGAAGATTTACGGAATTTA R:TTATAAAAGCTCTTCGTACG | 675 |
srfA | F:ACACAGATATCAGGCAAGC R:GTCCCATCGTTCCTTCACA | 1 300 | |
Fengycins | fenA | F:GCTGTCCGTTCTGCTTTTTC R:GTCGGTGCATGAAATGTACG | 1 000 |
fenB | F:CTATAGTTTGTTGACGGCTC R:CAGCACTGGTTCTTGTCGCA | 1 600 | |
Iturins | ituA | F:ATGTATACCAGTCAATTCC R:GATCCGAAGCTGACAATAG | 1 047 |
ituC | F:TTCACTTTTGATCTGGCGAT R:CGTCCGGTACATTTTCAC | 575 | |
ituD | F:GATGCGATCTCCTTGGATGT R:ATCGTCATGTGCTGCTTGAG | 647 | |
Bacillomycin D | bymA | F:AAAGCGGCTCAAGAAGCGAAACCC R:CGATTCAGCTCATCGACCAGGTAGGC-3 | 1 200 |
bymB | F:AATAGAAGAACTGCTGGCGT R:GCCTTCCCGACACGACACT | 983 | |
bymC | F:GAAGGACACGGCAGAGAGGTC R:CACTGATGACTGTTCCTGCT | 875 |
表2 脂肽类抗性基因检测引物
Table 2 Detection primers for lipopeptide resistance genes
种类Category | 靶基因 Target gene | 引物序列 Primer sequence(5'-3') | 扩增长度 Amplification size/bp |
---|---|---|---|
Surfactins | Sfp | F:ATGAAGATTTACGGAATTTA R:TTATAAAAGCTCTTCGTACG | 675 |
srfA | F:ACACAGATATCAGGCAAGC R:GTCCCATCGTTCCTTCACA | 1 300 | |
Fengycins | fenA | F:GCTGTCCGTTCTGCTTTTTC R:GTCGGTGCATGAAATGTACG | 1 000 |
fenB | F:CTATAGTTTGTTGACGGCTC R:CAGCACTGGTTCTTGTCGCA | 1 600 | |
Iturins | ituA | F:ATGTATACCAGTCAATTCC R:GATCCGAAGCTGACAATAG | 1 047 |
ituC | F:TTCACTTTTGATCTGGCGAT R:CGTCCGGTACATTTTCAC | 575 | |
ituD | F:GATGCGATCTCCTTGGATGT R:ATCGTCATGTGCTGCTTGAG | 647 | |
Bacillomycin D | bymA | F:AAAGCGGCTCAAGAAGCGAAACCC R:CGATTCAGCTCATCGACCAGGTAGGC-3 | 1 200 |
bymB | F:AATAGAAGAACTGCTGGCGT R:GCCTTCCCGACACGACACT | 983 | |
bymC | F:GAAGGACACGGCAGAGAGGTC R:CACTGATGACTGTTCCTGCT | 875 |
菌株 Strain | 初筛抑菌率Inhibition rate of initial screening/% | 复筛抑菌率Inhibition rate of re-screening/% |
---|---|---|
SH-53 | 92.35±0.99a | 89.59±1.18a |
N4471 | 87.29±0.67b | 88.06±0.90a |
N9456 | 88.47±0.83b | 85.35±0.67a |
N1468 | 80.00±1.71cd | 75.41±1.23b |
N1475 | 82.35±1.03c | 80.59±0.68b |
N1477 | 74.47±1.52e | 64.71±1.33c |
82-a2 | 79.41±1.21d | 79.61±0.68b |
82-a3 | 77.06±1.33e | 74.70±1.56b |
SH-1 | 76.71±1.02e | 73.13±1.23b |
SH-6 | 75.29±1.55e | 58.04±2.45d |
表3 功能菌株筛选结果
Table 3 Results of screening functional strains
菌株 Strain | 初筛抑菌率Inhibition rate of initial screening/% | 复筛抑菌率Inhibition rate of re-screening/% |
---|---|---|
SH-53 | 92.35±0.99a | 89.59±1.18a |
N4471 | 87.29±0.67b | 88.06±0.90a |
N9456 | 88.47±0.83b | 85.35±0.67a |
N1468 | 80.00±1.71cd | 75.41±1.23b |
N1475 | 82.35±1.03c | 80.59±0.68b |
N1477 | 74.47±1.52e | 64.71±1.33c |
82-a2 | 79.41±1.21d | 79.61±0.68b |
82-a3 | 77.06±1.33e | 74.70±1.56b |
SH-1 | 76.71±1.02e | 73.13±1.23b |
SH-6 | 75.29±1.55e | 58.04±2.45d |
处理 Treatment | 株高 Height/cm | 茎粗 Stem thickness/mm | 根长 Root length/cm | 茎叶鲜重 Fresh weight of stems and leaves/g | 茎叶干重 Dry weight of stems and leaves/g | 根鲜重 Fresh weight of roots/g | 根干重 Dry weight of roots/g |
---|---|---|---|---|---|---|---|
Ck1 | 57.00±8.27b | 3.82±1.21b | 21.89±4.81b | 21.92±7.52b | 2.72±0.97b | 2.15±1.09b | 0.14±0.19a |
Ck2 | 62.50±9.06b | 5.24±1.38b | 25.41±8.24b | 22.44±8.96b | 3.94±2.09b | 2.87±1.14b | 0.21±0.21a |
SH-53 | 84.10±9.35a | 6.30±0.71a | 38.71±9.01a | 33.81±8.96a | 5.81±2.09a | 3.21±0.04b | 0.44±0.31a |
N4471 | 79.20±11.05a | 6.41±0.87a | 29.85±7.20b | 33.49±10.85a | 7.22±2.00a | 4.34±1.76a | 0.53±0.38a |
N9456 | 82.80±10.38a | 6.17±0.88a | 33.46±7.26a | 37.13±9.60a | 6.13±2.25a | 4.01±1.26a | 0.35±0.30a |
表4 功能菌株对番茄幼苗生长的影响
Table 4 Effects of functional strains on the growths of tomato seedlings
处理 Treatment | 株高 Height/cm | 茎粗 Stem thickness/mm | 根长 Root length/cm | 茎叶鲜重 Fresh weight of stems and leaves/g | 茎叶干重 Dry weight of stems and leaves/g | 根鲜重 Fresh weight of roots/g | 根干重 Dry weight of roots/g |
---|---|---|---|---|---|---|---|
Ck1 | 57.00±8.27b | 3.82±1.21b | 21.89±4.81b | 21.92±7.52b | 2.72±0.97b | 2.15±1.09b | 0.14±0.19a |
Ck2 | 62.50±9.06b | 5.24±1.38b | 25.41±8.24b | 22.44±8.96b | 3.94±2.09b | 2.87±1.14b | 0.21±0.21a |
SH-53 | 84.10±9.35a | 6.30±0.71a | 38.71±9.01a | 33.81±8.96a | 5.81±2.09a | 3.21±0.04b | 0.44±0.31a |
N4471 | 79.20±11.05a | 6.41±0.87a | 29.85±7.20b | 33.49±10.85a | 7.22±2.00a | 4.34±1.76a | 0.53±0.38a |
N9456 | 82.80±10.38a | 6.17±0.88a | 33.46±7.26a | 37.13±9.60a | 6.13±2.25a | 4.01±1.26a | 0.35±0.30a |
测定项目 Measuring item | 反应 Reaction | |||
---|---|---|---|---|
SH-53 | N4471 | N9456 | ||
革兰氏染色 Gram staining | + | + | + | |
形成芽孢Forming spores | + | + | + | |
菌体形态 Mycelial morphology | Rhabditiform | Rhabditiform | Rhabditiform | |
接触酶 Catalase | + | + | + | |
V-P 实验V-P experiment | + | + | + | |
甲基红 Methyl red | - | - | - | |
分解淀粉 Gelatin liquefaction | + | + | + | |
最低生长温度 Minimum growth temperature | 4℃ | 4℃ | 4℃ | |
生长含盐量范围 Growth salinity range | 0%-13% | 0%-13% | 0%-14% | |
产吲哚Producing indoles | + | + | - | |
厌氧生长 Anaerobic growth | - | - | - | |
硝化酸盐还原 Nitrate reduction | + | + | + |
表5 功能菌株生理生化功能测定
Table 5 Determination of physiological and biochemical functions of the functional strains
测定项目 Measuring item | 反应 Reaction | |||
---|---|---|---|---|
SH-53 | N4471 | N9456 | ||
革兰氏染色 Gram staining | + | + | + | |
形成芽孢Forming spores | + | + | + | |
菌体形态 Mycelial morphology | Rhabditiform | Rhabditiform | Rhabditiform | |
接触酶 Catalase | + | + | + | |
V-P 实验V-P experiment | + | + | + | |
甲基红 Methyl red | - | - | - | |
分解淀粉 Gelatin liquefaction | + | + | + | |
最低生长温度 Minimum growth temperature | 4℃ | 4℃ | 4℃ | |
生长含盐量范围 Growth salinity range | 0%-13% | 0%-13% | 0%-14% | |
产吲哚Producing indoles | + | + | - | |
厌氧生长 Anaerobic growth | - | - | - | |
硝化酸盐还原 Nitrate reduction | + | + | + |
图9 菌株SH-53、N4471和N9456基于16S rRNA、gyrA、rpoB序列的系统分析发育树
Fig. 9 Phylogenetic trees of the strain SH-53, N4471 and N9456 based on 16S rRNA, gyrA, and rpoB sequences
[1] | 李馨宇, 米刚, Евгения В. 土壤微生物资源在农业中的应用[J]. 农业工程技术, 2023, 43(1): 107-108. |
Li XY, Mi G, Евгения В. Application of soil microbial resources in agriculture[J]. Agric Eng Technol, 2023, 43(1): 107-108. | |
[2] | 王璇, 周志成, 肖启明, 等. 土壤微生物防治植物病害的研究进展[J]. 北京农业, 2014(9): 16. |
Wang X, Zhou ZC, Xiao QM, et al. Research progress of soil microorganisms in controlling plant diseases[J]. Beijing Agric, 2014(9): 16. | |
[3] |
王凤婷, 王岩, 孙颖, 等. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0582 |
Wang FT, Wang Y, Sun Y, et al. Isolation and identification of saline-alkali tolerant Aspergillus terreus SYAT-1 and its activities against plant pathogenic fungi[J]. Biotechnol Bull, 2023, 39(2): 203-210. | |
[4] |
Carro L, Razmilic V, Nouioui I, et al. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert[J]. Antonie Van Leeuwenhoek, 2018, 111(8): 1375-1387.
doi: 10.1007/s10482-018-1049-1 |
[5] |
Luziatelli F, Crognale S, D'Annibale A, et al. Screening, isolation, and characterization of glycosyl-hydrolase-producing fungi from desert halophyte plants[J]. Int Microbiol, 2014, 17(1): 41-48.
pmid: 25296445 |
[6] |
Flores A, Valencia-Marín MF, Chávez-Avila S, et al. Genome mining, phylogenetic, and functional analysis of arsenic(As)resistance operons in Bacillus strains, isolated from As-rich hot spring microbial mats[J]. Microbiol Res, 2022, 264: 127158.
doi: 10.1016/j.micres.2022.127158 URL |
[7] |
Shi W, Takano T, Liu SK. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil[J]. World J Microbiol Biotechnol, 2012, 28(5): 2147-2157.
doi: 10.1007/s11274-012-1020-7 URL |
[8] |
Tao CY, Li R, Xiong W, et al. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression[J]. Microbiome, 2020, 8(1): 137.
doi: 10.1186/s40168-020-00892-z URL |
[9] |
申云鑫, 施竹凤, 周旭东, 等. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0722 |
Shen YX, Shi ZF, Zhou XD, et al. Isolation, identification and bio-activity of three Bacillus strains with biocontrol function[J]. Biotechnol Bull, 2023, 39(3): 267-277. | |
[10] |
Morais EM, Silva AAR, Sousa FWA, et al. Endophytic Trichoderma strains isolated from forest species of the Cerrado-Caatinga ecotone are potential biocontrol agents against crop pathogenic fungi[J]. PLoS One, 2022, 17(4): e0265824.
doi: 10.1371/journal.pone.0265824 URL |
[11] | 宋嘉宝, 王明锋, 罗昭标, 等. 海南雪茄烟叶霉变微生物鉴定及拮抗菌株筛选[J]. 烟草科技, 2022, 55(11): 7-13. |
Song JB, Wang MF, Luo ZB, et al. Identification of microorganisms resulted mildew on Hainan cigar tobacco and their antagonistic strains'screening[J]. Tob Sci Technol, 2022, 55(11): 7-13. | |
[12] |
Wen Y, Zhang GS, Bahadur A, et al. Genomic investigation of desert Streptomyces huasconensis D23 reveals its environmental adaptability and antimicrobial activity[J]. Microorganisms, 2022, 10(12): 2408.
doi: 10.3390/microorganisms10122408 URL |
[13] | 张雪娇, 石晶晶, 常娜, 等. 河北省冬小麦赤霉病拮抗细菌的分离与鉴定[J]. 作物杂志, 2017(2): 157-162. |
Zhang XJ, Shi JJ, Chang N, et al. Isolation and identification of antagonistic bacteria of Fusarium head blight of winter wheat in Hebei Province[J]. Crops, 2017(2): 157-162. | |
[14] | 赵月盈. 解淀粉芽孢杆菌抗病机制研究进展[J]. 亚热带农业研究, 2021, 17(3): 205-210. |
Zhao YY. Research progress on the disease inhibition mechanism of Bacillus amyloliquefaciens[J]. Subtrop Agric Res, 2021, 17(3): 205-210. | |
[15] |
Zhang CN, Chen HM, Dai Y, et al. Isolation and screening of phosphorus solubilizing bacteria from saline alkali soil and their potential for Pb pollution remediation[J]. Front Bioeng Biotechnol, 2023, 11: 1134310.
doi: 10.3389/fbioe.2023.1134310 URL |
[16] | 袁军. 无量山国家级自然保护区生物多样性及保护对策研究[J]. 福建林业科技, 2010, 37(3): 131-135. |
Yuan J. Wuliangshan state natural reserve biodiversity and its protection countermeasures research[J]. J Fujian For Sci Technol, 2010, 37(3): 131-135. | |
[17] |
Rani N, Kaur G, Kaur S, et al. Plant growth-promoting attributes of zinc solubilizing Dietzia maris isolated from polyhouse rhizospheric soil of punjab[J]. Curr Microbiol, 2022, 80(1): 48.
doi: 10.1007/s00284-022-03147-2 |
[18] | 赵江源, 邹雪峰, 何翔, 等. 2株分泌型铁载体真菌对番茄青枯病的防效[J]. 植物保护, 2022, 48(4): 123-130. |
Zhao JY, Zou XF, He X, et al. Control effects of two siderophore-producing fungi against tomato bacterial wilt[J]. Plant Prot, 2022, 48(4): 123-130. | |
[19] | 孙扬. 枯茗酸抑菌活性及其对西瓜枯萎病原菌的抑菌机理研究[D]. 杨凌: 西北农林科技大学, 2019. |
Sun Y. Fungicidal activities of cuminic acid and its lethal mechanisms against Fusarium oxysporum f. sp. niveum[D]. Yangling: Northwest A & F University, 2019. | |
[20] | 邱谷丰, 任廷丹, 王强, 等. 氯氟醚菌唑对西红花球茎腐烂病原菌尖孢镰刀菌的生物活性[J]. 农药学学报, 2023, 25(4): 850-857. |
Qiu GF, Ren TD, Wang Q, et al. Bioactivity of mefentrifluconazole against Fusarium oxysporum causing saffron corm rot[J]. Chin J Pestic Sci, 2023, 25(4): 850-857. | |
[21] | 王静, 宁燕夏, 李黄维, 等. 解淀粉芽孢杆菌B6在番茄根部定殖及对番茄枯萎病盆栽防效初步研究[J]. 中国植保导刊, 2018, 38(3): 19-22, 29. |
Wang J, Ning YX, Li HW, et al. Preliminary study on colonization capacity of Bacillus amyloliquefaciens B6 in tomato roots and its controlling efficiency against tomato Fusarium wilt[J]. China Plant Prot, 2018, 38(3): 19-22, 29. | |
[22] | Buchanan RE, Gibbons NE. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984. |
Buchanan RE, Gibbons NE. Bergey's Manual of Determinative Bacteriology[M]. 8th ed. Beijing: Science Press, 1984. | |
[23] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[24] | 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
Zhang DF, Gao YX, Wang YJ, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiol China, 2020, 47(11): 3634-3649. | |
[25] | 谢鑫, 张踞林, 王红宁, 等. 芽孢杆菌中天然脂肽类抗生素的合成及作用机制研究进展[J]. 中国抗生素杂志, 2021, 46(5): 362-370. |
Xie X, Zhang JL, Wang HN, et al. Research progress of the synthetic and functional mechanisms of natural lipopeptide antibiotics from Bacillus[J]. Chin J Antibiot, 2021, 46(5): 362-370. | |
[26] | 许本宏. 暹罗芽孢杆菌(Bacillus siamensis)JFL15抗菌物质的纯化鉴定及其生物合成途径解析[D]. 广州: 华南农业大学, 2018. |
Xu BH. Purification, identification and biosynthesis pathway analysis of antimicrobial compounds produced by Bacillus siamensis JFL15[D]. Guangzhou: South China Agricultural University, 2018. | |
[27] |
陈哲, 黄静, 赵佳, 等. 解淀粉芽孢杆菌抑菌机制的研究进展[J]. 生物技术通报, 2015, 31(6): 37-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.004 |
Chen Z, Huang J, Zhao J, et al. Research advances on antibacterial mechanism of Bacillus amyloliquefaciens[J]. Biotechnol Bull, 2015, 31(6): 37-41.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.06.004 |
|
[28] |
李岚岚, 戴利铭, 蒋桂芝, 等. 橡胶树炭疽病生防内生菌的分离鉴定及抑菌作用研究[J]. 热带作物学报, 2021, 42(10): 2958-2965.
doi: 10.3969/j.issn.1000-2561.2021.10.028 |
Li LL, Dai LM, Jiang GZ, et al. Isolation, identification and bacteriostasis study of endophytic bacteria to control Colletotrichum leaf disease on rubber tree[J]. Chin J Trop Crops, 2021, 42(10): 2958-2965. | |
[29] | 梁丽琼, 黄少莉, 邵杭, 等. 水稻基腐病菌拮抗菌解淀粉芽孢杆菌E3菌株的鉴定及抑菌活性[J]. 华南农业大学学报, 2021, 42(4): 51-62. |
Liang LQ, Huang SL, Shao H, et al. Identification of an antagonistic strain Bacillus amyloliquefaciens E3 against Dickeya zeae and its antimicrobial activity[J]. J South China Agric Univ, 2021, 42(4): 51-62. | |
[30] | 王亚娇, 栗秋生, 纪莉景, 等. 一株西瓜枯萎病生防菌的鉴定与田间防效[J]. 微生物学通报, 2021, 48(6): 1976-1984. |
Wang YJ, Li QS, Ji LJ, et al. Identification and field control effect of an antagonistic bacterium against watermelon Fusarium wilt[J]. Microbiol China, 2021, 48(6): 1976-1984. | |
[31] |
Figueroa-Brambila KM, Escalante-Beltrán A, Montoya-Martínez AC, et al. Bacillus cabrialesii: five years of research on a novel species of biological control and plant growth-promoting bacteria[J]. Plants, 2023, 12(13): 2419.
doi: 10.3390/plants12132419 URL |
[32] |
Zhou L, Song CX, et al. Bacillus cabrialesii BH5 protects tomato plants against Botrytis cinerea by production of specific antifungal compounds[J]. Front Microbiol, 2021, 12: 707609.
doi: 10.3389/fmicb.2021.707609 URL |
[33] | 林志楷, 林文珍. 暹罗芽孢杆菌研究进展[J]. 亚热带植物科学, 2019, 48(4): 391-396. |
Lin ZK, Lin WZ. Research progress on Bacillus siamensis[J]. Subtrop Plant Sci, 2019, 48(4): 391-396. | |
[34] | 汤永玉, 吴国星, 朱国渊, 等. 附子白绢病菌拮抗菌的鉴定、发酵条件优化及抑菌效果[J]. 微生物学通报, 2023, 50(7): 2892-2906. |
Tang YY, Wu GX, Zhu GY, et al. Identification, fermentation condition optimization, and effect of a strain against Sclerotium rolfsii in Aconitum carmichaeli[J]. Microbiol China, 2023, 50(7): 2892-2906. | |
[35] | 张霞, 许曼琳, 于静, 等. 暹罗芽孢杆菌ZHX-10对花生冠腐病的生防效果[J]. 花生学报, 2020, 49(4): 52-56. |
Zhang X, Xu ML, Yu J, et al. Biological control of Bacillus sinensis ZHX-10 on peanut crown rot[J]. J Peanut Sci, 2020, 49(4): 52-56. | |
[36] | 史璐欣. 暹罗芽孢杆菌YJ15挥发性有机物抑菌成分解析及对灰葡萄孢的抑菌作用[D]. 太谷: 山西农业大学, 2022. |
Shi LX. Analysis of antifungal composition and inhibition effects of VOCs produced by Bacillus siamensis YJ15 on Botrytis cinerea[D]. Taigu: Shanxi Agricultural University, 2022. | |
[37] | 池景良, 郝敏, 王志学, 等. 解磷微生物研究及应用进展[J]. 微生物学杂志, 2021, 41(1): 1-7. |
Chi JL, Hao M, Wang ZX, et al. Advances in research and application of phosphorus-solubilizing microorganism[J]. J Microbiol, 2021, 41(1): 1-7. | |
[38] | 肖瑀轩, 赵舒然, 文秋, 等. 鸡源暹罗芽孢杆菌CML548的益生特性及全基因组分析[J]. 微生物学通报, 2023, 50(2): 584-599. |
Xiao YX, Zhao SR, Wen Q, et al. Probiotic characteristics and whole genome analysis of Bacillus siamensis CML548 from chicken[J]. Microbiol China, 2023, 50(2): 584-599. | |
[39] |
褚睿, 李昭轩, 等. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1574 |
Chu R, Li ZX, et al. Screening and identification of antagonistic Bacillus spp. against cucumber Fusarium wilt and its biocontrol effect[J]. Biotechnol Bull, 2023, 39(8): 262-271. | |
[40] | 黎萍, 高新星, 韩昆明, 等. 花生根际微生物的分离及高效功能菌株筛选[J]. 微生物学通报, 2023, 50(10): 4433-4447. |
Li P, Gao XX, Han KM, et al. Isolation and efficient strain screening of microorganisms from peanut rhizosphere[J]. Microbiol China, 2023, 50(10): 4433-4447. | |
[41] | 汤雨葳, 于孟, 叶建仁. Zn对解淀粉芽孢杆菌JK-JS8生物膜形成及拮抗能力的影响[J]. 微生物学通报, 2022, 49(10): 4134-4143. |
Tang YW, Yu M, Ye JR. Biofilm formation and antagonistic ability of Bacillus amyloliquefaciens JK-JS8 under Zn stress[J]. Microbiol China, 2022, 49(10): 4134-4143. | |
[42] | Sellappan R, Thangavel K. Enzymatic activity and efficacy of plant growth promoting Bacillus amyloliquefaciens on feeding behaviour of Spodoptera frugiperda on maize[J]. Int J Environ Clim Change, 2022: 405-413. |
[1] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[2] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[3] | 路喻丹, 刘晓驰, 冯新, 陈桂信, 陈义挺. 猕猴桃BBX基因家族成员鉴定与转录特征分析[J]. 生物技术通报, 2024, 40(2): 172-182. |
[4] | 杨雨青, 谭娟, 汪芳, 彭顺利, 陈婕, 谭明燕, 吕美艳, 周富裕, 刘声传. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报, 2024, 40(2): 20-30. |
[5] | 王雨晴, 马子奇, 侯嘉欣, 宗钰琪, 郝晗睿, 刘国元, 魏辉, 连博琳, 陈艳红, 张健. 盐胁迫下植物根系分泌物的成分分析与生态功能研究进展[J]. 生物技术通报, 2024, 40(1): 12-23. |
[6] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[7] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[8] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[9] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[10] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[11] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[12] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[13] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[14] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[15] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||