生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 48-57.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1151
收稿日期:
2023-12-08
出版日期:
2024-05-26
发布日期:
2024-04-19
通讯作者:
李轶女,女,博士,研究员,研究方向:分子病毒学;E-mail: liyinv@caas.cn作者简介:
窦金萍,女,博士研究生,研究方向:病毒微生物学;E-mail: idoujinping@163.com
基金资助:
DOU Jin-ping(), GAO Wei-song, WEI Shuang, GAO Xin-tao, LI Yi-nv()
Received:
2023-12-08
Published:
2024-05-26
Online:
2024-04-19
摘要:
外泌体是一种细胞外囊泡,内含有多种蛋白质和细胞调节因子,参与细胞间的信息传递并调控细胞的生长和生理过程。由于外泌体的功能差异性与分泌其细胞的类型和状态密切相关,因此在细胞水平的免疫研究中,外泌体可在一定程度上反映细胞的基因表达水平。病毒个体微小、结构简单,在感染宿主细胞,完成自身复制以及逃逸宿主免疫等过程中涉及到复杂的免疫调控网络,其中外泌体作为信息交流的新兴关注点,在这一免疫调控网络中的“使者”作用值得关注。MicroRNA在细胞间信息交流中也具有重要的调控作用,作为外泌体装载的货物,被选择性的分选到外泌体后,外泌体microRNA能够更加稳定的靶向调节生物功能,参与调控病毒免疫。本文介绍了外泌体的组成、发生机制以及内容物的成分,并以其中研究范围较广,研究内容较多的外泌体miRNA为出发点,重点阐述其在病毒免疫中的双重作用,通过了解外泌体miRNA在同种病毒或不同病毒中的调控作用,对进一步解析病毒入侵宿主的机理具有重要意义。
窦金萍, 高维崧, 韦双, 高新桃, 李轶女. 外泌体MicroRNA在抗病毒免疫中的功能分析[J]. 生物技术通报, 2024, 40(5): 48-57.
DOU Jin-ping, GAO Wei-song, WEI Shuang, GAO Xin-tao, LI Yi-nv. Functional Analysis of Exosomal MicroRNA in Antiviral Immunity[J]. Biotechnology Bulletin, 2024, 40(5): 48-57.
图2 外泌体的发生机制 在ESCRT复合物的协助下,细胞质膜内陷经过一系列的物质分选最终形成外泌体,通过识别受体完成靶细胞间的信息交流
Fig. 2 Mechanism of exosome formation With the assistance of the ESCRT complex, the cytoplasmic membrane invagination of cells eventually forms exosomes through a series of material sorting, and information communication with target cells is completed by recognizing receptors
图3 外泌体的生物医学应用 梯度离心纯化得到的外泌体,可应用于医药和免疫研究等领域。
Fig. 3 Biomedical applications of exosomes The exosomes purified by gradient centrifugation can be used in the fields of medicine and immunology research
图4 外泌体在病毒感染中的双刃剑作用 左侧为HBV病毒感染肝细胞分泌的外泌体miRNA能限制病毒感染,右侧为多种病毒感染细胞分泌的外泌体miRNA能促进病毒复制
Fig. 4 Dual role of exosomes in viral infection Left: The exosomal miRNA secreted by HBV-infected hepatocytes, can restrict viral infection. Right: The exosomal miRNA secreted by various virus-infected cells, can promote viral replication
[1] |
Admyre C, Johansson SM, Paulie S, et al. Direct exosome stimulation of peripheral human T cells detected by ELISPOT[J]. Eur J Immunol, 2006, 36(7): 1772-1781.
doi: 10.1002/eji.200535615 pmid: 16761310 |
[2] | Tan A, Rajadas J, Seifalian AM. Exosomes as nano-theranostic delivery platforms for gene therapy[J]. Adv Drug Deliv Rev, 2013, 65(3): 357-367. |
[3] | 李双双, 杜春阳, 袁媛, 等. 不同细胞来源的外泌体的特点和功能[J]. 国际药学研究杂志, 2019, 46(6): 411-417. |
Li SS, Du CY, Yuan Y, et al. Characteristics and functions of exosomes from different cell sources[J]. J Int Pharm Res, 2019, 46(6): 411-417. | |
[4] | Wolf P. The nature and significance of platelet products in human plasma[J]. Br J Haematol, 1967, 13(3): 269-288. |
[5] |
Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: Selective externalization of the receptor[J]. Cell, 1983, 33(3): 967-978.
doi: 10.1016/0092-8674(83)90040-5 pmid: 6307529 |
[6] | Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles(exosomes). J. Biol. Chem 1987 ;262(19):9412-9420. |
[7] |
Raposo G, Nijman HW, Stoorvogel W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3): 1161-1172.
doi: 10.1084/jem.183.3.1161 pmid: 8642258 |
[8] |
Zitvogel L, Regnault A, Lozier A, et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes[J]. Nat Med, 1998, 4(5): 594-600.
doi: 10.1038/nm0598-594 pmid: 9585234 |
[9] |
Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659.
doi: 10.1038/ncb1596 pmid: 17486113 |
[10] |
Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go[J]. Cell, 2016, 164(6): 1226-1232.
doi: S0092-8674(16)30057-5 pmid: 26967288 |
[11] |
Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles[J]. Circ Res, 2017, 120(10): 1632-1648.
doi: 10.1161/CIRCRESAHA.117.309417 pmid: 28495994 |
[12] | Wang T, Zhang L, Liang WL, et al. Extracellular vesicles originating from autophagy mediate an antibody-resistant spread of classical swine fever virus in cell culture[J]. Autophagy, 2022, 18(6): 1433-1449. |
[13] |
Xia BQ, Pan XY, Luo RH, et al. Extracellular vesicles mediate antibody-resistant transmission of SARS-CoV-2[J]. Cell Discov, 2023, 9: 2.
doi: 10.1038/s41421-022-00510-2 pmid: 36609376 |
[14] | Liang JQ, Yin H. STAM transports STING oligomers into extracellular vesicles, down-regulating the innate immune response[J]. J Extracell Vesicles, 2023, 12(3): e12316. |
[15] | 郑忠涛, 祝叶, 刘小强. 巨噬细胞外泌体介导mir-222靶向Caspase-10促进胶质瘤增殖[J]. 海南医学院学报, 2023, 29(24): 1848-1854. |
Zheng ZT, Zhu Y, Liu XQ, et al. Macrophage-derived exosomes mediate mir-222 targeting Caspase-10 to promote glioma proliferation[J]. Journal of Hainan Medical University, 2023, 29(24): 1848-1854. | |
[16] | 彭梦阳, 贺花, 王献伟, 等. 外泌体的生物学功能和调控机制研究进展[J]. 中国畜牧杂志, 2021, 57(1): 11-16. |
Peng MY, He H, Wang XW, et al. Advances in biological functions and regulatory mechanisms of exosomes[J]. Chin J Anim Sci, 2021, 57(1): 11-16. | |
[17] | 高文静, 侯敏, 王攀, 等. 外泌体作为中药新活性成分的研究进展[J]. 世界科学技术-中医药现代化, 2019, 21(9): 1869-1876. |
Gao WJ, Hou M, Wang P, et al. Advances in research on exosome As a new active ingredient in traditional Chinese medicine[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2019, 21(9): 1869-1876. | |
[18] | 刘满宇, 付璐, 张文慧, 等. 免疫细胞与外泌体相互作用机制的研究进展[J]. 中国免疫学杂志, 2019, 35(22): 2806-2812. |
Liu MY, Fu L, Zhang WH, et al. Progress in mechanism of interaction between immune cells and exosomes[J]. Chin J Immunol, 2019, 35(22): 2806-2812. | |
[19] |
Yang M, Song DH, Cao XY, et al. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS[J]. Food Res Int, 2017, 92: 17-25.
doi: S0963-9969(16)30590-7 pmid: 28290293 |
[20] |
Bagno L, Hatzistergos KE, Balkan W, et al. Mesenchymal stem cell-based therapy for cardiovascular disease: progress and challenges[J]. Mol Ther, 2018, 26(7): 1610-1623.
doi: S1525-0016(18)30212-0 pmid: 29807782 |
[21] | Kahlert C, Kalluri R. Exosomes in tumor microenvironment influence cancer progression and metastasis[J]. J Mol Med, 2013, 91(4): 431-437. |
[22] |
Théry C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function[J]. Nat Rev Immunol, 2002, 2(8): 569-579.
doi: 10.1038/nri855 pmid: 12154376 |
[23] | Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): eaau6977. |
[24] | 肖倍倍, 高瑛, 林雨洁, 等. 细胞外囊泡与肿瘤[J]. 中国细胞生物学学报, 2022, 44(4): 594-603. |
Xiao BB, Gao Y, Lin YJ, et al. Extracellular vesicles and cancers[J]. Chin J Cell Biol, 2022, 44(4): 594-603. | |
[25] | Vietri M, Radulovic M, Stenmark H. The many functions of ESCRTs[J]. Nat Rev Mol Cell Biol, 2020, 21(1): 25-42. |
[26] |
Henne WM, Buchkovich NJ, Emr SD. The ESCRT pathway[J]. Dev Cell, 2011, 21(1): 77-91.
doi: 10.1016/j.devcel.2011.05.015 pmid: 21763610 |
[27] |
Morita E, Sundquist WI. Retrovirus budding[J]. Annu Rev Cell Dev Biol, 2004, 20: 395-425.
pmid: 15473846 |
[28] | 张光辉, 任静朝, 姚武, 等. 外泌体在病毒感染中的作用[J]. 中华微生物学和免疫学杂志, 2018, 38(6): 476-480. |
Zhang GH, Ren JC, Yao W, et al. Role of exosomes in virus infection[J]. Chin J Microbiol Immunol, 2018, 38(6): 476-480. | |
[29] | Moon B, Chang S. Exosome as a delivery vehicle for cancer therapy[J]. Cells, 2022, 11(3): 316. |
[30] |
Wang QH, Ding XQ, Zhen F, et al. Remedial applications of exosomes in cancer, infections and diabetes[J]. Acta Pol Pharm, 2017, 74(2): 313-320.
pmid: 29624236 |
[31] | Song H, Liu B, Dong B, et al. Exosome-based delivery of natural products in cancer therapy[J]. Front Cell Dev Biol, 2021, 9: 650426. |
[32] |
丁军, 付子琳, 和俊豪, 等. 乳源外泌体研究进展[J]. 畜牧兽医学报, 2022, 53(4): 1019-1029.
doi: 10.11843/j.issn.0366-6964.2022.04.003 |
Ding J, Fu ZL, He JH, et al. Research progress of milk-derived exosomes[J]. Acta Vet Zootechnica Sin, 2022, 53(4): 1019-1029. | |
[33] |
陈婷, 谢梅英, 魏立民, 等. 猪乳外泌体对猪流行性腹泻病毒的抑制作用[J]. 生物技术通报, 2021, 37(12): 141-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0112 |
Chen T, Xie MY, Wei LM, et al. Inhibitory effects of porcine milk-derived exosome on porcine epidemic diarrhea virus[J]. Biotechnol Bull, 2021, 37(12): 141-150.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0112 |
|
[34] | Hao R, Yu ZT, Du J, et al. A high-throughput nanofluidic device for exosome nanoporation to develop cargo delivery vehicles(small 35/2021)[J]. Small, 2021, 17(35): 2170184. |
[35] |
Shao MY, Xu Q, Wu ZR, et al. Exosomes derived from human umbilical cord mesenchymal stem cells ameliorate IL-6-induced acute liver injury through miR-455-3p[J]. Stem Cell Res Ther, 2020, 11(1): 37.
doi: 10.1186/s13287-020-1550-0 pmid: 31973730 |
[36] |
Altan-Bonnet N. Extracellular vesicles are the Trojan horses of viral infection[J]. Curr Opin Microbiol, 2016, 32: 77-81.
doi: S1369-5274(16)30059-5 pmid: 27232382 |
[37] | Liu T, Zhang Q, Zhang JK, et al. EVmiRNA: a database of miRNA profiling in extracellular vesicles[J]. Nucleic Acids Res, 2019, 47(D1): D89-D93. |
[38] | 方程, 沈智杰, 王肖龙, 等. Exosomes介导的细胞与细胞之间的信息传递[J]. 中西医结合心脑血管病杂志, 2014, 12(5): 608-610. |
Fang C, Shen ZJ, Wang XL, et al. Exosomes-mediated information transmission between cells[J]. Chin J Integr Med Cardio /cerebrovascular Dis, 2014, 12(5): 608-610. | |
[39] |
Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment of exosome composition[J]. Cell, 2019, 177(2): 428-445.e18.
doi: S0092-8674(19)30212-0 pmid: 30951670 |
[40] |
Kadiu I, Narayanasamy P, Dash PK, et al. Biochemical and biologic characterization of exosomes and microvesicles as facilitators of HIV-1 infection in macrophages[J]. J Immunol, 2012, 189(2): 744-754.
doi: 10.4049/jimmunol.1102244 pmid: 22711894 |
[41] |
Gould SJ, Booth AM, Hildreth JEK. The Trojan exosome hypothesis[J]. Proc Natl Acad Sci USA, 2003, 100(19): 10592-10597.
pmid: 12947040 |
[42] |
Ramakrishnaiah V, Thumann C, Fofana I, et al. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci USA, 2013, 110(32): 13109-13113.
doi: 10.1073/pnas.1221899110 pmid: 23878230 |
[43] | Bukong TN, Momen-Heravi F, Kodys K, et al. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90[J]. PLoS Pathog, 2014, 10(10): e1004424. |
[44] | 毛元鹏, 于哲, 宋阿倩, 等. 从病毒性肝炎到肝细胞癌: 外泌体microRNA的作用[J]. 临床肝胆病杂志, 2023, 39(2): 439-443. |
Mao YP, Yu Z, Song AQ, et al. From viral hepatitis to hepatocellular carcinoma: The role of exosomal microRNAs[J]. Journal of Clinical Hepatology, 2023, 39(2): 439-443. | |
[45] | 傅煜轩. 外泌体介导的miR——146a通过抑制I型干扰素产生进而促进肠道病毒71型复制[D]. 南京: 南京大学, 2018. |
Fu YX. MiR—146a mediated by exosomes can promote the replication of enterovirus 71 by inhibiting the production of interferon type I[D]. Nanjing: Nanjing University, 2018. | |
[46] | 叶贺贺, 卢涛, 钟婧, 等. 流感病毒感染 A549 细胞外泌体差异 microRNA 筛选及靶基因分析[J]. 中国免疫学杂志, 2022, 38(12):1414-1422. |
Ye HH, Lu T, Zhong J, et al. Screening differentially expressed microRNA in exosomes from A549 cells infected with influenza virus and analyzing their target genes[J]. Chinese Journal of Immunology, 2022, 38(12):1414-1422. | |
[47] | Hsu YC, Wei MT, Nguyen MH. Tenofovir alafenamide as compared to tenofovir disoproxil fumarate in the management of chronic hepatitis B with recent trends in patient demographics[J]. Expert Rev Gastroenterol Hepatol, 2017, 11(11): 999-1008. |
[48] | 刘娇, 刘青, 王大明, 等. 慢性乙型肝炎患者血清外泌体miR-122、miR-146a表达与HBV-DNA载量的相关性[J]. 疑难病杂志, 2020, 19(10): 976-979, 984. |
Liu J, Liu Q, Wang DM, et al. Correlation between serum exosomal miR-122 and miR-146a expression and HBV-DNA load in patients with chronic hepatitis B[J]. Chin J Difficult Complicat Cases, 2020, 19(10): 976-979, 984. | |
[49] | 中华医学会肝病学分会, 中华医学会感染病学分会. 慢性乙型肝炎防治指南(2022年版)[J]. 中华临床感染病杂志, 2022, 15(6): 401-427. |
Chinese Society of Hepatology, Chinese Medical Association. Guidelines for the prevention and treatment of chronic hepatitis B(2022version)[J]. Chin J Infect Dis, 2022, 15(6): 401-427. | |
[50] | 贾小芳, 褚巧芳, 袁正宏. 外泌体与病毒感染及HBV相关肝病的关系[J]. 临床肝胆病杂志, 2017, 33(8): 1465-1470. |
Jia XF, Chu QF, Yuan ZH. Association of exosomes with viral infection and hepatitis B virus-related liver diseases[J]. J Clin Hepatol, 2017, 33(8): 1465-1470. | |
[51] | Yang X, Li HF, Sun HH, et al. Hepatitis B virus-encoded microRNA controls viral replication[J]. J Virol, 2017, 91(10): e01919-16. |
[52] |
Chen RD, Zhao X, Wang YX, et al. Hepatitis B virus X protein is capable of down-regulating protein level of host antiviral protein APOBEC3G[J]. Sci Rep, 2017, 7: 40783.
doi: 10.1038/srep40783 pmid: 28098260 |
[53] | Ahmed W, Tariq S, Khan G. Tracking EBV-encoded RNAs(EBERs)from the nucleus to the excreted exosomes of B-lymphocytes[J]. Sci Rep, 2018, 8(1): 15438. |
[54] | 黄豪博, 沈建箴. EB病毒潜伏感染致淋巴瘤细胞外泌体分泌和功能异常的研究进展[J]. 中国实验血液学杂志, 2020, 28(1): 325-328. |
Huang HB, Shen JZ. Research advances on abnormal secretion and function abnormality of exosomes derived from lymphoma cells caused by latent EB virus—review[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2020, 28(1): 325-328. | |
[55] | 毛立. 外泌体和自噬在山羊副流感病毒3型感染中的作用研究[D]. 北京: 中国农业科学院, 2019. |
Mao L. Study on the role of exosomes and autophagy in goat parainfluenza virus type 3 infection[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[56] | Zhou CL, Tan L, Sun YJ, et al. Exosomes carry microRNAs into neighboring cells to promote diffusive infection of Newcastle disease virus[J]. Viruses, 2019, 11(6): 527. |
[57] | 外泌体携带miRNA进入邻近细胞能够促进新城疫病毒(NDV)感染[J]. 中国预防兽医学报, 2019, 41(7): 775. |
Exosomes carry microRNAs into neighboring cells to promote diffusive infection of Newcastle disease virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2019, 41(07): 775. | |
[58] |
Kouwaki T, Okamoto T, Ito A, et al. Hepatocyte factor JMJD5 regulates hepatitis B virus replication through interaction with HBx[J]. J Virol, 2016, 90(7): 3530-3542.
doi: 10.1128/JVI.02776-15 pmid: 26792738 |
[59] | 吴文煜. 干扰素作用下巨噬细胞外泌体内miR-574-5p抑制肝细胞HBV复制作用机制的研究[D]. 上海: 华中科技大学, 2022. |
Wu WY. Study on the mechanism of mi R-574-5p in exosomes secreted by macrophages to inhibit HBV replication in liver cells under the effect of interferon[D]. Shanghai: Huazhong University, 2022. | |
[60] |
Li JH, Liu KC, Liu Y, et al. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity[J]. Nat Immunol, 2013, 14(8): 793-803.
doi: 10.1038/ni.2647 pmid: 23832071 |
[61] | Yao ZL, Qiao YS, Li XF, et al. Exosomes exploit the virus entry machinery and pathway to transmit alpha interferon-induced antiviral activity[J]. J Virol, 2018, 92(24): e01578-18. |
[62] | 滕亚为. 外泌体递送miR-101抑制II型单纯疱疹病毒和水痘-带状疱疹病毒复制[D]. 长春: 吉林大学, 2020. |
Teng YW. Exosomes deliver miR-101 to inhibit the replication of herpes simplex virus type II and varicella-zoster virus[D]. Changchun: Jilin University, 2020. | |
[63] | Wang X, Chen QZ, Zan YX, et al. Exosomal miR-145-5p derived from orthohantavirus-infected endothelial cells inhibits HTNV infection[J]. FASEB J, 2020, 34(10): 13809-13825. |
[64] | 王静宇. 外泌体在狂犬病毒感染MRC-5细胞和Vero细胞过程中的作用及机制研究[D]. 吉林: 吉林大学, 2019. |
Wang JY. Studies on the role and mechanism of exosomes during the infection processes of rabies virus in MRC-5 cells and Vero cells[D]. Jilin: Jinlin University, 2019. | |
[65] |
Maemura T, Fukuyama S, Sugita Y, et al. Lung-derived exosomal miR-483-3p regulates the innate immune response to influenza virus infection[J]. J Infect Dis, 2018, 217(9): 1372-1382.
doi: 10.1093/infdis/jiy035 pmid: 29373693 |
[66] |
Maemura T, Fukuyama S, Kawaoka Y. High levels of miR-483-3p are present in serum exosomes upon infection of mice with highly pathogenic avian influenza virus[J]. Front Microbiol, 2020, 11: 144.
doi: 10.3389/fmicb.2020.00144 pmid: 32117163 |
[67] | 李艳梅, 程侠菊, 王燕. 外泌体包裹的miR-19b抑制EV71复制的影响[J]. 河南师范大学学报: 自然科学版, 2023, 51(2): 115-120. |
Li YM, Cheng XJ, Wang Y. Exosome mediated miR-19b effect on the replication of EV71[J]. J Henan Norm Univ Nat Sci Ed, 2023, 51(2): 115-120. | |
[68] | Wu YC, Yue Y, Xiong SD. Cardiac miR-19a/19b was induced and hijacked by CVB3 to facilitate virus replication via targeting viral genomic RdRp-encoding region[J]. Antiviral Res, 2023, 217: 105702. |
[1] | 张雪萍, 鲁雨晴, 张月倩, 李晓娟. 植物细胞外囊泡及其分析技术的进展[J]. 生物技术通报, 2023, 39(5): 32-43. |
[2] | 葛颜锐, 赵冉, 徐静, 李若凡, 胡云涛, 李瑞丽. 植物维管形成层发育及其调控的研究进展[J]. 生物技术通报, 2023, 39(3): 13-25. |
[3] | 黎智康, 刘晨雪璇, 谭楚敏, 熊盛, 谢秋玲. MFG-E8作为外泌体载体蛋白的作用与功能[J]. 生物技术通报, 2022, 38(4): 288-294. |
[4] | 王梦婷, 曹杰宇, 王忠新, 王雅瑜, 杨大佐, 周一兵, 赵欢. MicroRNA参与水生动物环境污染物胁迫应答的研究进展[J]. 生物技术通报, 2021, 37(6): 272-278. |
[5] | 张廷焕, 龙熙, 郭宗义, 柴捷. miR-378促进脂质生成相关靶基因鉴定[J]. 生物技术通报, 2021, 37(2): 80-87. |
[6] | 陈婷, 谢梅英, 魏立民, 欧阳坤, 程晓, 张永亮. 猪乳外泌体对猪流行性腹泻病毒的抑制作用[J]. 生物技术通报, 2021, 37(12): 141-150. |
[7] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[8] | 刘娜, 杜盼盼, 杨扬, 李小毛. 基于微流控技术的外泌体分离方法的研究进展[J]. 生物技术通报, 2019, 35(1): 207-213. |
[9] | 赵岩, 曹晓颖, 周昊天, 宋凌元, 涂翰卿, 黄思颖, 赵金良. 鳜不同孵化时期miRNA转录组分析及生长相关miRNA鉴定[J]. 生物技术通报, 2018, 34(8): 181-189. |
[10] | 谢洁 ,王明 ,李青 ,潘妃 ,熊兴耀 ,秦玉芝. 植物miR390的研究进展[J]. 生物技术通报, 2018, 34(6): 1-10. |
[11] | 李宇鹏,张一鸣,胡海碧,康成宇,李牧洲,郭志云. 肝癌细胞HepG2中p53调控miRNA-3661的生物信息分析与功能验证[J]. 生物技术通报, 2017, 33(7): 216-223. |
[12] | 杨亚蓝, 郭志云, 丁若凡, 茆灿泉, 郭建秀, 熊莉丽. 阿霉素诱导下的肝癌细胞HepG2中微小RNA差异表达分析[J]. 生物技术通报, 2016, 32(6): 244-249. |
[13] | 刘伟灿,周永刚,王兴超,王法微,王南,董园园,李晓薇,李海燕. 植物MicroRNA介导的基因调控在作物改良中的应用潜能[J]. 生物技术通报, 2016, 32(4): 6-15. |
[14] | 齐仁立, 黄金秀, 龙定彪, 黄萍. MicroRNA与NF-κB调控的细胞凋亡[J]. 生物技术通报, 2015, 31(5): 27-31. |
[15] | 王维,张玉娟,陈洁,刘聚波,夏民旋,沈法富. 植物逆境胁迫相关miRNA研究进展[J]. 生物技术通报, 2015, 31(1): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||