生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 326-334.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0333
• 研究报告 • 上一篇
孙晗冰(
), 向念, 方欣馨, 岳俊秀, 许秋实, 马莉(
)
收稿日期:2025-03-31
出版日期:2025-09-26
发布日期:2025-09-24
通讯作者:
马莉,教授,研究方向 :动物生殖与发育;E-mail: mali10110903@163.com作者简介:孙晗冰,硕士研究生,研究方向 :奶牛卵泡颗粒细胞增殖及分化;E-mail: 2206139165@qq.com
基金资助:
SUN Han-bing(
), XIANG Nian, FANG Xin-xin, YUE Jun-xiu, XU Qiu-shi, MA Li(
)
Received:2025-03-31
Published:2025-09-26
Online:2025-09-24
摘要:
目的 探究音猬因子(sonic hedgehog, Shh)信号对奶牛卵泡颗粒细胞增殖与分化的影响。 方法 采集发情期奶牛卵巢,通过IHC检测Shh在卵巢组织中的表达特征。分离并培养奶牛卵泡颗粒细胞,试验处理为:对照组、Ad-Shh组(转染Shh过表达腺病毒,MOI=50处理48 h)、Ad-Shh+Cyc组(在过表达Shh的基础上添加Shh信号通路抑制剂环巴胺(cyclopamine, Cyc,5 μmol/L)处理24 h)。免疫荧光、MTS、EdU法分析细胞的增殖活力;流式细胞术分析细胞周期变化;Western blot检测Shh、Ki67、增殖和分化相关蛋白的表达。 结果 IHC结果显示,Shh在奶牛卵巢组织中高表达;免疫荧光结果显示,过表达Shh促进颗粒细胞中Ki67的表达,Cyc逆转了这种变化(P<0.01);MTS和EdU结果表明,Cyc逆转了过表达Shh对细胞增殖活力的增强作用(P<0.01);流式细胞术结果显示,过表达Shh促进颗粒细胞的细胞周期由G1期向S期转变(G1期细胞比例由91.42%降低至71.58%,降低19.84%,S期细胞比例由4.88%升高至22.22%,升高17.34%),Cyc减缓了细胞周期进程(P<0.01);Western blot结果显示,过表达Shh促进Ki67、细胞增殖、细胞分化相关蛋白的表达(P<0.01),Cyc逆转了过表达Shh对Ki67、细胞增殖、细胞分化相关蛋白表达的促进作用(P<0.01)。 结论 Shh信号正向调节奶牛卵泡颗粒细胞的增殖与分化。
孙晗冰, 向念, 方欣馨, 岳俊秀, 许秋实, 马莉. Shh信号对奶牛卵泡颗粒细胞增殖与分化的影响[J]. 生物技术通报, 2025, 41(9): 326-334.
SUN Han-bing, XIANG Nian, FANG Xin-xin, YUE Jun-xiu, XU Qiu-shi, MA Li. Effects of Shh Signal on the Proliferation and Differentiation of Follicular Granulosa Cells in Dairy Cows[J]. Biotechnology Bulletin, 2025, 41(9): 326-334.
图1 Shh信号在奶牛卵巢组织中的表达特征A:Shh信号在奶牛卵巢组织中的表达特征。棕色表示Shh蛋白,蓝色表示细胞核;B:图A框选部分放大结果
Fig. 1 Expression characteristics of the Shh signal in the ovarian tissue of dairy cowsA:Expression characteristics of the Shh signaling pathway in the ovarian tissue of dairy cows. The brown color indicates Shh protein, and the blue color indicates the cell nucleus. B: Magnified results of the part enclosed in figure A
图2 奶牛卵泡GCs中Ki67的免疫荧光表达A:GCs中Ki67表达的免疫荧光结果;B:Ki67阳性细胞率统计分析;*P<0.05,**P<0.01,下同
Fig. 2 Immunofluorescence expression of Ki67 in the GCs of dairy cow folliclesA: The immunofluorescence results of Ki67 expression in GCs. B: Statistical analysis of Ki67 positive cell rate; *P<0.05, **P<0.01, the same below
图3 Shh信号对奶牛卵泡GCs增殖活力的影响A:MTS检测细胞增殖率;B:EdU检测细胞增殖结果;C:EdU阳性细胞率统计分析;D:Shh和增殖标志蛋白Ki67的蛋白表达灰度图;E:Shh的蛋白相对表达量;F:增殖标志蛋白Ki67的蛋白相对表达量
Fig. 3 Influence of Shh signal on the proliferation activity of GCs in dairy cow folliclesA: Cell proliferation rate was detected by MTS. B: EdU detects the results of cell proliferation. C: Statistical analysis of EdU positive cell rate. D: Grayscale images of protein expression of Shh and proliferation marker protein Ki67. E: The relative expression of Shh protein. F: The relative expression of the proliferation marker protein Ki67
图4 Shh信号对奶牛卵泡GCs增殖进程的影响A-C:奶牛卵泡GCs细胞周期进程的变化;D:细胞周期进程变化水平
Fig. 4 Influences of Shh signal on the proliferation process of GCs in dairy cow folliclesA-C: Variation in the cell cycle process of GCs in dairy cow follicles. D: Variation in the cell cycle progression
图5 Shh信号对奶牛卵泡GCs的细胞周期的影响A:细胞周期蛋白(CCND1、CCND2、CCND3、CCNE1)的蛋白表达灰度图;B:细胞周期蛋白的蛋白相对表达量;C:细胞周期蛋白依赖性激酶(CDK2、CDK4、CDK6)的蛋白表达灰度图;D:细胞周期蛋白依赖性激酶的蛋白相对表达量
Fig. 5 Influence of Shh signal on the cell cycle of GCs in dairy cow folliclesA: Grayscale images of the protein expressions of cyclins (CCND1, CCND2, CCND3, and CCNE1). B: Relative protein expression of cyclins. C: Grayscale images of the protein expressions of cyclin-dependent kinases (CDK2、CDK4、CDK6). D: Relative protein expression of cyclin-dependent kinases
图6 Shh信号对奶牛卵泡GCs中分化蛋白表达的影响A:细胞分化标志分子(StAR、CYP19A1、LHCGR)的蛋白表达灰度图;B-D:细胞分化标志分子(StAR、CYP19A1、LHCGR)的蛋白相对表达量
Fig. 6 Influence of Shh signal on the expression of differentiation proteins in GCs of dairy cow folliclesA: Grayscale images of the protein expressions of cell differentiation marker molecules (StAR, CYP19A1, and LHCGR). B-D:Relative protein expression of cell differentiation marker molecules (StAR, CYP19A1, and LHCGR)
| [1] | 张元博. 高产奶牛繁殖性能低的原因探究 [J]. 黑龙江粮食, 2021(11): 113-114. |
| Zhang YB. Study on the causes of low reproductive performance of high-yield dairy cows [J]. Heilongjiang Grain, 2021(11): 113-114. | |
| [2] | Tohumcu V, Cengiz M, Hayirli A, et al. Effects of intrauterine isoproterenol administration on ovarian follicular development in cows [J]. Vet Med Sci, 2025, 11(1): e70198. |
| [3] | 宋浩然, 冯肖艺, 张培培, 等. 奶牛卵泡颗粒细胞在卵泡发育中的作用机制 [J]. 畜牧兽医学报, 2024, 55(6): 2313-2324. |
| Song HR, Feng XY, Zhang PP, et al. The mechanism of granulosa cells in dairy cow follicles during follicular development [J]. Chinese Journal of Animal Science and Veterinary Medicine, 2024, 55(6): 2313-2324. | |
| [4] | Straube P, Beckers A, Jany UWH, et al. Interplay of SHH, WNT and BMP4 signaling regulates the development of the Lamina propria in the murine ureter [J]. Development, 2025, 152(3): DEV204214. |
| [5] | Snijesh VP, Krishnamurthy S, Bhardwaj V, et al. SHH signaling as a key player in endometrial cancer: unveiling the correlation with good prognosis, low proliferation, and anti-tumor immune milieu [J]. Int J Mol Sci, 2024, 25(19): 10443. |
| [6] | Xu Y, Song SM, Wang ZN, et al. The role of hedgehog signaling in gastric cancer: molecular mechanisms, clinical potential, and perspective [J]. Cell Commun Signal, 2019, 17(1): 157. |
| [7] | Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies [J]. J Biomed Res, 2021, 36(1): 1-9. |
| [8] | Jiang J. Hedgehog signaling mechanism and role in cancer [J]. Semin Cancer Biol, 2022, 85: 107-122. |
| [9] | Russell MC, Cowan RG, Harman RM, et al. The hedgehog signaling pathway in the mouse ovary [J]. Biol Reprod, 2007, 77(2): 226-236. |
| [10] | Pusapati GV, Kong JH, Patel BB, et al. G protein-coupled receptors control the sensitivity of cells to the morphogen Sonic Hedgehog [J]. Sci Signal, 2018, 11(516): eaao5749. |
| [11] | Terauchi KJ, Miyagawa S, Iguchi T, et al. Hedgehog signaling regulates the basement membrane remodeling during folliculogenesis in the neonatal mouse ovary [J]. Cell Tissue Res, 2020, 381(3): 555-567. |
| [12] | 王莹, 张姣姣, 王鲜忠, 等. 卵巢颗粒细胞自噬研究进展 [J]. 畜牧兽医学报, 2025, 56(4): 1508-1517. |
| Wang Y, Zhang JJ, Wang XZ, et al. Advances in autophagy of ovarian granulosa cells [J]. Acta Vet Zootechnica Sin, 2025, 56(4): 1508-1517. | |
| [13] | Liu W, Xin QL, Wang X, et al. Estrogen receptors in granulosa cells govern meiotic resumption of pre-ovulatory oocytes in mammals [J]. Cell Death Dis, 2017, 8(3): e2662. |
| [14] | Robker RL, Hennebold JD, Russell DL. Coordination of ovulation and oocyte maturation: a good egg at the right time [J]. Endocrinology, 2018, 159(9): 3209-3218. |
| [15] | 党文庆, 何敏, 曲玉涵, 等. 牛卵泡颗粒细胞中Wnt/β-catenin与Notch信号通路关键因子的表达规律 [J]. 农业生物技术学报, 2024, 32(11): 2552-2563. |
| Dang WQ, He M, Qu YH, et al. Expression patterns of key factors of the Wnt/β-catenin and Notch signaling pathways in bovine follicular granulosa cells [J]. Transactions of the Chinese Society of Agricultural Biotechnology, 2024, 32(11): 2552-2563. | |
| [16] | 张喆, 孙海翔, 颜桂军. 浅析卵巢中的HIPPO信号通路 [J]. 生殖医学杂志, 2024, 33(12): 1676-1682. |
| He Z, Sun HX, Yan GJ. A Brief Analysis of the HIPPO Signaling Pathway in the Ovary [J]. Journal of Reproductive Medicine, 2024, 33(12): 1676-1682. | |
| [17] | 灭列·马达尼牙提, 孙萌, 褚瑰燕. Hedgehog信号通路在动物卵巢卵泡发育和类固醇生成中的调控作用 [J]. 畜牧兽医学报, 2025, 56(3): 969-978. |
| Melie M, Sun M, Chu GY. The regulatory function of the hedgehog signaling pathway in follicle development and steroidogenesis of animal ovary [J]. Acta Vet Zootechnica Sin, 2025, 56(3): 969-978. | |
| [18] | Nilsson E, Skinner MK. Cellular interactions that control primordial follicle development and folliculogenesis [J]. J Soc Gynecol Investig, 2001, 8(1 ): S17-S20. |
| [19] | Walterhouse DO, Lamm MLG, Villavicencio E, et al. Emerging roles for hedgehog-patched-Gli signal transduction in reproduction [J]. Biol Reprod, 2003, 69(1): 8-14. |
| [20] | 王红. Hsa_circ_0007694/hsa-miR-135b-5p/SMAD5轴在系统性红斑狼疮中的机制研究 [D]. 合肥: 安徽医科大学, 2023. |
| Wang H. Study on the mechanism of Hsa_circ_0007694/hsa-miR-135b-5p/SMAD5 axis in systemic lupus erythematosus [D]. Hefei: Anhui Medical University, 2023. | |
| [21] | 范云珲, 逯璐, 许秋实, 等. 全反式视黄酸在牛前脂肪细胞增殖及分化中的作用 [J]. 中国兽医学报, 2022, 42(11): 2256-2260, 2291. |
| Fan YH, Lu L, Xu QS, et al. Effects of all-trans retinoic acid on cell proliferation and differentiation in bovine preadipocytes [J]. Chin J Vet Sci, 2022, 42(11): 2256-2260, 2291. | |
| [22] | 杨素芳, 韦丽娟, 梁菁媛, 等. 原始卵泡激活相关细胞周期蛋白和细胞周期蛋白依赖激酶研究进展 [J]. 基因组学与应用生物学, 2024, 43(8): 1321-1331. |
| Yang SF, Wei LJ, Liang JY, et al. Research progress on primordial follicular activation-related cyclins and cyclin-dependent kinases [J]. Genomics and Applied Biology, 2024, 43(8): 1321-1331. | |
| [23] | Li X, Yin XF, Wang HF, et al. The combination effect of homoharringtonine and ibrutinib on FLT3-ITD mutant acute myeloid leukemia [J]. Blood, 2016, 128(22): 5225. |
| [24] | Niu DP, Ma YM, Ren PY, et al. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation [J]. PLoS Pathog, 2024, 20(9): e1012535. |
| [25] | Wu XW, Yang XB, Xiong Y, et al. Distinct CDK6 complexes determine tumor cell response to CDK4/6 inhibitors and degraders [J]. Nat Cancer, 2021, 2(4): 429-443. |
| [26] | 毛晓宇, 杜嘉伟, 汤嘉玉, 等. 干扰和过表达CHRNG对牛成肌细胞增殖分化的影响 [J]. 畜牧兽医学报, 2024, 55(10): 4360-4376. |
| Mao XY, Du JW, Tang JY, et al. Effects of CHRNG gene on proliferation and differentiation of bovine myoblasts and its mechanism [J]. Acta Vet Zootechnica Sin, 2024, 55(10): 4360-4376. | |
| [27] | Wu JF, Liu Y, Gong SN, et al. Effects of vascular endothelial growth factor (VEGF) on the viability, apoptosis and steroidogenesis of yak (Bos grunniens) granulosa cells [J]. Theriogenology, 2023, 207: 1-10. |
| [28] | Yao DQ, Li SY, You MD, et al. Developmental exposure to nonylphenol leads to depletion of the neural precursor cell pool in the hippocampal dentate gyrus [J]. Chem Biol Interact, 2024, 401: 111187. |
| [29] | Ma L, Duan CC, Yang ZQ, et al. Crosstalk between Activin A and Shh signaling contributes to the proliferation and differentiation of antler chondrocytes [J]. Bone, 2019, 123: 176-188. |
| [30] | Wigglesworth K, Lee KB, Emori C, et al. Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles [J]. Biol Reprod, 2015, 92(1): 23. |
| [31] | 王焕, 吴效科, 马红丽. LHCGR基因多态性与多囊卵巢综合征关联性的研究进展 [J]. 吉林大学学报: 医学版, 2022, 48(5): 1354-1360. |
| Wang H, Wu XK, Ma HL. Research progress on the association between LHCGR gene polymorphism and polycystic ovary syndrome [J]. Journal of Jilin University: Medical Science Edition, 2022, 48(5): 1354-1360. | |
| [32] | Aziz NB, Mahmudunnabi RG, Umer M, et al. microRNAs in ovarian cancer and recent advances in the development of microRNA-based biosensors [J]. Analyst, 2020, 145(6): 2038-2057. |
| [33] | Wang FL, Xia K, Feng X, et al. The effect of luteinizing hormone receptor on the proliferation and differentiation of testicular interstitial stem cells[J]. New Medicine, 2021, 52(05): 352-359. |
| [34] | Lu XR, Duan AQ, Ma XY, et al. Knockdown of CYP19A1 in buffalo follicular granulosa cells results in increased progesterone secretion and promotes cell proliferation [J]. Front Vet Sci, 2020, 7: 539496. |
| [1] | 李云宾, 黎玉萍, 成钦, 林春, 毛自朝, 刘正杰. 芦笋DUF247基因家族成员鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 198-209. |
| [2] | 姬中祥, 罗仍卓么, 李宇航, 王玉梅, 虎喜敏, 李彦青, 王兴平. miR-3604在牛子宫内膜上皮细胞容受性、增殖和凋亡中的作用[J]. 生物技术通报, 2024, 40(12): 291-298. |
| [3] | 段子朋, 孙缦利, 陈彦锋, 邓同兴, 金少举, 范文娟, 陈旭东. 虾青素通过AMPK/mTOR信号通路促进鸡肌肉干细胞增殖与分化[J]. 生物技术通报, 2024, 40(11): 312-320. |
| [4] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
| [5] | 马钰静, 段春辉, 贺名扬, 张英杰, 杨若晨, 王泳, 刘月琴. 敲除G0S2基因对绵羊卵巢颗粒细胞增殖、类固醇激素及相关基因表达的影响[J]. 生物技术通报, 2023, 39(6): 325-334. |
| [6] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
| [7] | 杨昕冉, 王建芳, 马鑫浩, 昝林森. m6A甲基化修饰相关酶基因在牛脂肪生成中的表达分析[J]. 生物技术通报, 2022, 38(7): 70-79. |
| [8] | 盛雪晴, 赵楠, 林亚秋, 陈定双, 王瑞龙, 李傲, 王永, 李艳艳. 山羊ZNF32的克隆及表达分析[J]. 生物技术通报, 2022, 38(12): 300-311. |
| [9] | 王树萱, 向钢, 马小京, 于晶. Galectin-1的4T1乳腺癌过表达细胞的构建及其对增殖和转移的影响[J]. 生物技术通报, 2022, 38(11): 97-103. |
| [10] | 张浩, 何长晟, 李艳艳, 王永, 朱江江, 俄木曲者, 林亚秋. miR-301b对山羊肌内脂肪细胞分化的调控作用[J]. 生物技术通报, 2022, 38(10): 254-261. |
| [11] | 金秋霞, 王思宏, 金丽华. 果蝇肠道干细胞及肠道菌群的研究进展[J]. 生物技术通报, 2021, 37(4): 245-250. |
| [12] | 郑芳芳, 林俊生. 增殖诱导配体蛋白的核酸适配体筛选与特异性研究[J]. 生物技术通报, 2021, 37(10): 196-202. |
| [13] | 李堃, 刘悦, 黄鹏, 杨智昉, 胡茜, 张颖, 李志宏, 吕叶辉, 梁乐. 小鼠精原细胞分化的蛋白质组学研究[J]. 生物技术通报, 2020, 36(3): 168-176. |
| [14] | 王红芳, 胥保华. 蜜蜂肠道微生物与其社会性的关系[J]. 生物技术通报, 2020, 36(2): 71-76. |
| [15] | 杨雷, 叶洲杰, 李兆龙, 沈阳坤, 傅雅娟. 利用电转的方法对T细胞TET2基因敲除并探讨TET2对T细胞增殖的影响[J]. 生物技术通报, 2020, 36(1): 229-237. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||