生物技术通报 ›› 2025, Vol. 41 ›› Issue (9): 71-81.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0318
黄国栋1(
), 邓宇星1, 程宏伟2, 但焱南1, 周会汶1(
), 吴兰花1(
)
收稿日期:2025-03-26
出版日期:2025-09-26
发布日期:2025-09-24
通讯作者:
周会汶,男,博士,讲师,研究方向 :作物遗传育种及抗逆性分子机理;E-mail: zhouhuiwen0320@126.com;作者简介:黄国栋,男,研究方向 :大豆耐逆基因功能验证;E-mail: 1444098903@qq.com
基金资助:
HUANG Guo-dong1(
), DENG Yu-xing1, CHENG Hong-wei2, DAN Yan-nan1, ZHOU Hui-wen1(
), WU Lan-hua1(
)
Received:2025-03-26
Published:2025-09-26
Online:2025-09-24
摘要:
目的 鉴定大豆锌铁转运蛋白(zinc-regulated transporter/iron-regulated transporter, ZIP)基因家族成员,分析GmZIP基因家族成员在铝胁迫下的表达模式,为阐明GmZIP家族的生物学功能奠定基础。 方法 通过生物信息学鉴定大豆基因组中GmZIP基因家族成员,根据鉴定结果构建其系统发育树,预测蛋白网络图,分析基因家族成员的共线性关系、基因结构及启动子顺式作用元件。经转录组分析GmZIP基因家族成员在大豆不同组织中及在铝胁迫下的表达模式。 结果 在大豆基因组中鉴定到26个GmZIP基因家族成员,分布在14条染色体上,分为Ⅰ-Ⅴ亚家族。GmZIP基因家族成员基因结构较为保守,均含有ZIP保守结构域,含有多个外显子,且不同成员之间外显子数量差异明显。转录组结果显示,大部分GmZIP成员在大豆根和根瘤组织均有较高表达水平;在铝胁迫下,有3个成员(GmZIP6、GmZIP12、GmZIP25)在耐铝大豆种质南农99-6中上调表达,在铝敏感大豆种质中豆32中2个上调表达(GmZIP20、GmZIP25)、1个下调表达(GmZIP23)。蛋白预测结果显示,26个GmZIP蛋白中有16个存在互作关系,其中铝胁迫下差异表达基因有GmZIP23、GmZIP25。荧光定量PCR检测发现,耐铝种质中GmZIP25在铝处理72 h后表达量最高,而铝敏感种质中GmZIP25在处理12 h时表达量达到最大值。 结论 推测GmZIP25在大豆响应铝胁迫中具有重要作用。
黄国栋, 邓宇星, 程宏伟, 但焱南, 周会汶, 吴兰花. 大豆ZIP基因家族鉴定及响应铝胁迫的表达分析[J]. 生物技术通报, 2025, 41(9): 71-81.
HUANG Guo-dong, DENG Yu-xing, CHENG Hong-wei, DAN Yan-nan, ZHOU Hui-wen, WU Lan-hua. Genome-wide Identification and Expression Analysis of the ZIP Gene Family in Soybean[J]. Biotechnology Bulletin, 2025, 41(9): 71-81.
基因 Gene | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') | 片段大小 Size (bp) |
|---|---|---|---|
| GmZIP6 | GCGTGTTGTGTCCTTCTTTTAC | CTTAACAATGGGAGGCTCACC | 167 |
| GmZIP12 | AGGAGGAATCAGGGGATGTG | GAAGCTCCCATAGAAATTCC | 178 |
| GmZIP20 | TCCTTTTACCAACCATGGCCT | TCAACAATGGGAGGCTCACC | 150 |
| GmZIP23 | TGACCAACCGCGTGATGCTG | GTGATGATGATCAGAGCTAG | 127 |
| GmZIP25 | GAAGTGTAGGACTACTAGTG | GTCTCATGATGAGCATGGTG | 126 |
| Glyma.18G290800(Actin) | GCACCACCGGAGAGAAAATA | GTGCACAATTGATGGACCAG | 123 |
表1 荧光定量PCR基因引物序列
Table 1 Gene primer sequences for real-time PCR
基因 Gene | 上游引物 Forward primer (5'-3') | 下游引物 Reverse primer (5'-3') | 片段大小 Size (bp) |
|---|---|---|---|
| GmZIP6 | GCGTGTTGTGTCCTTCTTTTAC | CTTAACAATGGGAGGCTCACC | 167 |
| GmZIP12 | AGGAGGAATCAGGGGATGTG | GAAGCTCCCATAGAAATTCC | 178 |
| GmZIP20 | TCCTTTTACCAACCATGGCCT | TCAACAATGGGAGGCTCACC | 150 |
| GmZIP23 | TGACCAACCGCGTGATGCTG | GTGATGATGATCAGAGCTAG | 127 |
| GmZIP25 | GAAGTGTAGGACTACTAGTG | GTCTCATGATGAGCATGGTG | 126 |
| Glyma.18G290800(Actin) | GCACCACCGGAGAGAAAATA | GTGCACAATTGATGGACCAG | 123 |
基因 Gene | 基因ID Gene ID | 氨基酸数量 Amino acid | 相对分子质量 Mw(Da) | 等电点 pI | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性 Hydropathicity | 亚细胞定位 Subcellular location |
|---|---|---|---|---|---|---|---|---|
| GmZIP1 | Glyma.02G126000 | 360 | 38 468.30 | 7.62 | 26.61 | 104.06 | 0.551 | 细胞膜 |
| GmZIP2 | Glyma.05G137400 | 485 | 51 989.60 | 6.00 | 31.08 | 95.96 | -0.033 | 细胞膜 |
| GmZIP3 | Glyma.06G052000 | 478 | 51 484.51 | 6.57 | 52.00 | 94.14 | 0.340 | 细胞膜 |
| GmZIP4 | Glyma.07G223200 | 356 | 38 455.58 | 8.61 | 33.40 | 108.54 | 0.569 | 细胞膜 |
| GmZIP5 | Glyma.08G092700 | 485 | 52 353.64 | 5.79 | 35.60 | 92.95 | -0.139 | 细胞膜 |
| GmZIP6 | Glyma.08G164400 | 361 | 38 404.85 | 6.38 | 40.99 | 102.16 | 0.446 | 细胞膜 |
| GmZIP7 | Glyma.08G328000 | 349 | 37 559.76 | 6.06 | 32.77 | 107.65 | 0.668 | 细胞膜 |
| GmZIP8 | Glyma.09G271900 | 598 | 62 182.12 | 7.19 | 30.11 | 112.26 | 0.777 | 细胞膜 |
| GmZIP9 | Glyma.11G132500 | 272 | 28 959.34 | 9.10 | 47.79 | 114.38 | 0.693 | 细胞膜 |
| GmZIP10 | Glyma.11G169300 | 326 | 34 776.07 | 5.81 | 29.45 | 113.96 | 0.769 | 液泡膜 |
| GmZIP11 | Glyma.12G056900 | 256 | 27 593.55 | 9.19 | 45.62 | 114.26 | 0.586 | 细胞膜 |
| GmZIP12 | Glyma.13G004400 | 347 | 37 633.21 | 7.72 | 37.42 | 110.55 | 0.455 | 细胞膜 |
| GmZIP13 | Glyma.13G338300 | 350 | 37 989.51 | 8.43 | 30.78 | 105.63 | 0.549 | 细胞膜 |
| GmZIP14 | Glyma.13G340900 | 276 | 29 153.48 | 8.78 | 38.44 | 118.04 | 0.740 | 细胞膜 |
| GmZIP15 | Glyma.14G094902 | 135 | 14 389.27 | 6.50 | 43.26 | 120.00 | 1.076 | 液泡膜 |
| GmZIP16 | Glyma.14G196200 | 324 | 33 863.86 | 6.35 | 34.60 | 114.51 | 0.773 | 细胞膜 |
| GmZIP17 | Glyma.15G033500 | 276 | 29 241.54 | 7.95 | 37.60 | 117.68 | 0.717 | 细胞膜 |
| GmZIP18 | Glyma.15G036200 | 345 | 37 385.49 | 6.82 | 32.57 | 101.22 | 0.462 | 细胞膜 |
| GmZIP19 | Glyma.15G036300 | 342 | 36 681.97 | 8.18 | 31.29 | 106.08 | 0.617 | 细胞膜 |
| GmZIP20 | Glyma.15G262800 | 359 | 38 243.55 | 6.14 | 39.12 | 104.09 | 0.486 | 细胞膜 |
| GmZIP21 | Glyma.17G228600 | 393 | 43 130.94 | 5.73 | 40.52 | 98.52 | 0.475 | 细胞膜 |
| GmZIP22 | Glyma.18G060300 | 328 | 35 036.37 | 5.96 | 29.37 | 112.07 | 0.742 | 细胞膜 |
| GmZIP23 | Glyma.18G078600 | 360 | 38 721.95 | 6.08 | 35.02 | 108.97 | 0.577 | 细胞膜 |
| GmZIP24 | Glyma.18G217100 | 598 | 62 115.03 | 6.93 | 29.44 | 112.59 | 0.781 | 细胞膜 |
| GmZIP25 | Glyma.20G022500 | 358 | 38 705.73 | 6.86 | 34.80 | 105.20 | 0.548 | 细胞膜 |
| GmZIP26 | Glyma.20G063100 | 354 | 38 301.74 | 6.30 | 28.63 | 105.56 | 0.399 | 细胞膜 |
表2 GmZIP基因家族成员理化性质基本信息
Table 2 Basic information on physicochemical properties of GmZIP gene family members
基因 Gene | 基因ID Gene ID | 氨基酸数量 Amino acid | 相对分子质量 Mw(Da) | 等电点 pI | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性 Hydropathicity | 亚细胞定位 Subcellular location |
|---|---|---|---|---|---|---|---|---|
| GmZIP1 | Glyma.02G126000 | 360 | 38 468.30 | 7.62 | 26.61 | 104.06 | 0.551 | 细胞膜 |
| GmZIP2 | Glyma.05G137400 | 485 | 51 989.60 | 6.00 | 31.08 | 95.96 | -0.033 | 细胞膜 |
| GmZIP3 | Glyma.06G052000 | 478 | 51 484.51 | 6.57 | 52.00 | 94.14 | 0.340 | 细胞膜 |
| GmZIP4 | Glyma.07G223200 | 356 | 38 455.58 | 8.61 | 33.40 | 108.54 | 0.569 | 细胞膜 |
| GmZIP5 | Glyma.08G092700 | 485 | 52 353.64 | 5.79 | 35.60 | 92.95 | -0.139 | 细胞膜 |
| GmZIP6 | Glyma.08G164400 | 361 | 38 404.85 | 6.38 | 40.99 | 102.16 | 0.446 | 细胞膜 |
| GmZIP7 | Glyma.08G328000 | 349 | 37 559.76 | 6.06 | 32.77 | 107.65 | 0.668 | 细胞膜 |
| GmZIP8 | Glyma.09G271900 | 598 | 62 182.12 | 7.19 | 30.11 | 112.26 | 0.777 | 细胞膜 |
| GmZIP9 | Glyma.11G132500 | 272 | 28 959.34 | 9.10 | 47.79 | 114.38 | 0.693 | 细胞膜 |
| GmZIP10 | Glyma.11G169300 | 326 | 34 776.07 | 5.81 | 29.45 | 113.96 | 0.769 | 液泡膜 |
| GmZIP11 | Glyma.12G056900 | 256 | 27 593.55 | 9.19 | 45.62 | 114.26 | 0.586 | 细胞膜 |
| GmZIP12 | Glyma.13G004400 | 347 | 37 633.21 | 7.72 | 37.42 | 110.55 | 0.455 | 细胞膜 |
| GmZIP13 | Glyma.13G338300 | 350 | 37 989.51 | 8.43 | 30.78 | 105.63 | 0.549 | 细胞膜 |
| GmZIP14 | Glyma.13G340900 | 276 | 29 153.48 | 8.78 | 38.44 | 118.04 | 0.740 | 细胞膜 |
| GmZIP15 | Glyma.14G094902 | 135 | 14 389.27 | 6.50 | 43.26 | 120.00 | 1.076 | 液泡膜 |
| GmZIP16 | Glyma.14G196200 | 324 | 33 863.86 | 6.35 | 34.60 | 114.51 | 0.773 | 细胞膜 |
| GmZIP17 | Glyma.15G033500 | 276 | 29 241.54 | 7.95 | 37.60 | 117.68 | 0.717 | 细胞膜 |
| GmZIP18 | Glyma.15G036200 | 345 | 37 385.49 | 6.82 | 32.57 | 101.22 | 0.462 | 细胞膜 |
| GmZIP19 | Glyma.15G036300 | 342 | 36 681.97 | 8.18 | 31.29 | 106.08 | 0.617 | 细胞膜 |
| GmZIP20 | Glyma.15G262800 | 359 | 38 243.55 | 6.14 | 39.12 | 104.09 | 0.486 | 细胞膜 |
| GmZIP21 | Glyma.17G228600 | 393 | 43 130.94 | 5.73 | 40.52 | 98.52 | 0.475 | 细胞膜 |
| GmZIP22 | Glyma.18G060300 | 328 | 35 036.37 | 5.96 | 29.37 | 112.07 | 0.742 | 细胞膜 |
| GmZIP23 | Glyma.18G078600 | 360 | 38 721.95 | 6.08 | 35.02 | 108.97 | 0.577 | 细胞膜 |
| GmZIP24 | Glyma.18G217100 | 598 | 62 115.03 | 6.93 | 29.44 | 112.59 | 0.781 | 细胞膜 |
| GmZIP25 | Glyma.20G022500 | 358 | 38 705.73 | 6.86 | 34.80 | 105.20 | 0.548 | 细胞膜 |
| GmZIP26 | Glyma.20G063100 | 354 | 38 301.74 | 6.30 | 28.63 | 105.56 | 0.399 | 细胞膜 |
图5 大豆GmZIP基因在不同组织的表达模式Young_leaf代表新叶,Flower代表开花期,One cm pod代表长度为1 cm的豆荚,Pod shell代表种子发育10 d的豆荚壳
Fig. 5 Expression patterns of GmZIP in different tissues of soybeanYoung_leaf refers to new leaf, Flower refer to the period of flowering, One cm pod refers to a pod of 1cm in length, and Pod shell refers to a pod shell with 10 d of seed development
图6 GmZIP响应铝胁迫的表达模式(A)及互作蛋白预测分析(B、C)TCK和TT分别代表大豆耐铝种质南农99-6的对照组和铝处理组,SCK和ST分别代表大豆铝敏感种质中豆32的对照组和铝处理组
Fig. 6 Expression patterns (A) of GmZIP in response to Al stress and prediction analysis of interacting proteins (B, C) of GmZIPTCK and TT refer to the control group and Al poisoning treated group of soybean Al-tolerant variety Nangong 99-6, while SCK and ST refer to the control group and Al poisoning treated group of soybean Al-sensitive variety Zhongdou 32, respectively
| Gene | TT_T_vs_TCK_T_Log2FC | TT_T_vs_TCK_T_regulated | ST_T_vs_SCK_T_Log2FC | ST_T_vs_SCK_T_regulated |
|---|---|---|---|---|
| GmZIP6 | 1.24 | Up | 0.39 | False |
| GmZIP12 | 1.82 | Up | -0.10 | False |
| GmZIP20 | 0.898 | False | 1.14 | Up |
| GmZIP23 | -0.73 | False | -1.01 | Down |
| GmZIP25 | 4.25 | Up | 2.72 | Up |
表3 耐铝与铝敏感种质中差异表达GmZIP基因
Table 3 Differentially expressed GmZIP genes in Al-tolerant and Al-sensitive germplasm
| Gene | TT_T_vs_TCK_T_Log2FC | TT_T_vs_TCK_T_regulated | ST_T_vs_SCK_T_Log2FC | ST_T_vs_SCK_T_regulated |
|---|---|---|---|---|
| GmZIP6 | 1.24 | Up | 0.39 | False |
| GmZIP12 | 1.82 | Up | -0.10 | False |
| GmZIP20 | 0.898 | False | 1.14 | Up |
| GmZIP23 | -0.73 | False | -1.01 | Down |
| GmZIP25 | 4.25 | Up | 2.72 | Up |
图7 5个GmZIP不同处理时间响应铝胁迫的表达模式* 0.01 <P< 0.05,** P < 0.01
Fig. 7 Expression patterns of five GmZIPs in response to aluminum stress at different treatment time
| [1] | Ajeesh Krishna TP, Maharajan T, Victor Roch G, et al. Structure, function, regulation and phylogenetic relationship of ZIP family transporters of plants [J]. Front Plant Sci, 2020, 11: 662. |
| [2] | Guerinot ML. The ZIP family of metal transporters [J]. Biochim Biophys Acta BBA Biomembr, 2000, 1465(1-2): 190-198. |
| [3] | Vatansever R, Özyiğit İİ, Filiz E. Comparative and phylogenetic analysis of zinc transporter genes/proteins in plants [J]. Turk J Biol, 2016, 40(3): 600-611. |
| [4] | Grotz N, Fox T, Connolly E, et al. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency [J]. Proc Natl Acad Sci USA, 1998, 95(12): 7220-7224. |
| [5] | Zeng X, Yang SX, Li F, et al. Genome-wide identification of OsZIPs in rice and gene expression analysis under manganese and selenium stress [J]. Genes, 2024, 15(6): 696. |
| [6] | Ivanov R, Bauer P. Sequence and coexpression analysis of iron-regulated ZIP transporter genes reveals crossing points between iron acquisition strategies in green algae and land plants [J]. Plant Soil, 2017, 418(1): 61-73. |
| [7] | Mondal TK, Ahmad Ganie S, Rana MK, et al. Erratum to: genome-wide analysis of zinc transporter genes of maize (Zea mays) [J]. Plant Mol Biol Report, 2014, 32(3): 779. |
| [8] | Tang MJ, Zhang XL, Xu L, et al. Genome- and transcriptome-wide characterization of ZIP gene family reveals their potential role in radish (Raphanus sativus) response to heavy metal stresses [J]. Sci Hortic, 2024, 324: 112564. |
| [9] | Nishida S, Tsuzuki C, Kato A, et al. AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana [J]. Plant Cell Physiol, 2011, 52(8): 1433-1442. |
| [10] | Lin YF, Liang HM, Yang SY, et al. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter [J]. New Phytol, 2009, 182(2): 392-404. |
| [11] | Lee S, Lee J, Ricachenevsky FK, et al. Redundant roles of four ZIP family members in zinc homeostasis and seed development in Arabidopsis thaliana [J]. Plant J, 2021, 108(4): 1162-1173. |
| [12] | Ochoa Tufiño V, Almira Casellas M, van Duynhoven A, et al. Arabidopsis thaliana Zn transporter genes ZIP3 and ZIP5 provide the main Zn uptake route and act redundantly to face Zn deficiency [J]. Plant J, 2025, 121(3): e17251. |
| [13] | Liu XS, Feng SJ, Zhang BQ, et al. OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice [J]. BMC Plant Biol, 2019, 19(1): 283. |
| [14] | Yang M, Li YT, Liu ZH, et al. A high activity zinc transporter OsZIP9 mediates zinc uptake in rice [J]. Plant J, 2020, 103(5): 1695-1709. |
| [15] | Ishimaru Y, Suzuki M, Kobayashi T, et al. OsZIP4, a novel zinc-regulated zinc transporter in rice [J]. J Exp Bot, 2005, 56(422): 3207-3214. |
| [16] | Ishimaru Y, Masuda H, Suzuki M, et al. Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants [J]. J Exp Bot, 2007, 58(11): 2909-2915. |
| [17] | Kavitha PG, Kuruvilla S, Mathew MK. Functional characterization of a transition metal ion transporter, OsZIP6 from rice (Oryza sativa L.) [J]. Plant Physiol Biochem, 2015, 97: 165-174. |
| [18] | 蔺庆伟, 马剑敏, 彭雪, 等. 环境中铝来源、铝毒机制及影响因子研究进展 [J]. 生态环境学报, 2019, 28(9): 1915-1926. |
| Lin QW, Ma JM, Peng X, et al. Progress on the environmental sources of aluminum, mechanism of aluminum toxicity and its influencing factors [J]. Ecol Environ Sci, 2019, 28(9): 1915-1926. | |
| [19] | Chauhan DK, Yadav V, Vaculík M, et al. Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants [J]. Crit Rev Biotechnol, 2021, 41(5): 715-730. |
| [20] | de Almeida GHG, de Cássia Siqueira-Soares R, Mota TR, et al. Aluminum oxide nanoparticles affect the cell wall structure and lignin composition slightly altering the soybean growth [J]. Plant Physiol Biochem, 2021, 159: 335-346. |
| [21] | 胡湘云, 王奕文, 方幽文, 等. 酸性土壤下缓解大豆铝胁迫的研究进展 [J]. 科学通报, 2023, 68(33): 4517-4531. |
| Hu XY, Wang YW, Fang YW, et al. Research progress on alleviating aluminum stress of soybean in acidic soil [J]. Chin Sci Bull, 2023, 68(33): 4517-4531. | |
| [22] | Li HJ, Wang N, Hu WP, et al. ZmNRAMP4 enhances the tolerance to aluminum stress in Arabidopsis thaliana [J]. Int J Mol Sci, 2022, 23(15): 8162. |
| [23] | Li JY, Liu JP, Dong DK, et al. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance [J]. Proc Natl Acad Sci USA, 2014, 111(17): 6503-6508. |
| [24] | Lu MX, Wang ZG, Fu S, et al. Functional characterization of the SbNrat1 gene in sorghum [J]. Plant Sci, 2017, 262: 18-23. |
| [25] | Rahman R, Upadhyaya H. Aluminium toxicity and its tolerance in plant: a review [J]. J Plant Biol, 2021, 64(2): 101-121. |
| [26] | Zheng X, Chen L, Li XF. Arabidopsis and rice showed a distinct pattern in ZIPs genes expression profile in response to Cd stress [J]. Bot Stud, 2018, 59(1): 22. |
| [27] | Ramesh SA, Shin R, Eide DJ, et al. Differential metal selectivity and gene expression of two zinc transporters from rice [J]. Plant Physiol, 2003, 133(1): 126-134. |
| [28] | Wu X, Zhu ZB, Chen JH, et al. Transcriptome analysis revealed pivotal transporters involved in the reduction of cadmium accumulation in pak choi (Brassica chinensis L.) by exogenous hydrogen-rich water [J]. Chemosphere, 2019, 216: 684-697. |
| [29] | Liu JG, Wang XT, Wang N, et al. Comparative analyses reveal peroxidases play important roles in soybean tolerance to Aluminum toxicity [J]. Agronomy(Basel), 2021, 11(4): 670. |
| [30] | 周会汶, 黄朝平, 汪子怡, 等. 大豆苗期耐铝毒特性综合评价及种质筛选 [J]. 大豆科学, 2022, 41(6): 654-662. |
| Zhou HW, Huang CP, Wang ZY, et al. Comprehensive evaluation of aluminum toxicity tolerance and screening of germplasms during seedling stage in soybean [J]. Soybean Sci, 2022, 41(6): 654-662. | |
| [31] | Chen CJ, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data [J]. Mol Plant, 2020, 13(8): 1194-1202. |
| [32] | Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Mol Biol Evol, 2021, 38(7): 3022-3027. |
| [33] | Ullah A, Shah Z, Munir I, et al. Genome-wide screening and evolutionary analysis of ZIP (ZRT-IRT like proteins) family in cowpea (Vigna unguiculata L.) [J]. Genet Resour Crop Evol, 2024, 71(3): 1145-1157. |
| [34] | Severin AJ, Woody JL, Bolon YT, et al. RNA-seq atlas of Glycine max: a guide to the soybean transcriptome [J]. BMC Plant Biol, 2010, 10: 160. |
| [35] | Zhou HW, Wu LH, Wang RK, et al. Integrated transcriptome and metabolome analysis reveals the response mechanisms of soybean to aluminum toxicity [J]. Plant Soil, 2025. DOI: 10.1007/s11104-024-07151-2 . |
| [36] | 邓兆龙, 孔嘉欣, 李俊营, 等. 普通烟草NtZIP基因家族鉴定及镉胁迫下其表达分析 [J]. 植物生理学报, 2024, 60(7): 1105-1118. |
| Deng ZL, Kong JX, Li JY, et al. Identification of the NtZIP gene family and expression pattern analysis under cadmium stress in tobacco [J]. Plant Physiology Journal, 2024, 60(7): 1105-1118. | |
| [37] | Milner MJ, Seamon J, Craft E, et al. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis [J]. J Exp Bot, 2013, 64(1): 369-381. |
| [38] | Liu GX, Chen QQ, Li DQ, et al. GmSTOP1-3 increases soybean manganese accumulation under phosphorus deficiency by regulating GmMATE2/13 and GmZIP6/GmIREG3 [J]. Plant Cell Environ, 2025, 48(3): 1812-1828. |
| [39] | Mäser P, Thomine S, Schroeder JI, et al. Phylogenetic relationships within cation transporter families of Arabidopsis [J]. Plant Physiol, 2001, 126(4): 1646-1667. |
| [40] | Moreau S, Thomson RM, Kaiser BN, et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean [J]. J Biol Chem, 2002, 277(7): 4738-4746. |
| [1] | 程婷婷, 刘俊, 王利丽, 练从龙, 魏文君, 郭辉, 吴尧琳, 杨晶凡, 兰金旭, 陈随清. 杜仲查尔酮异构酶基因家族全基因组鉴定及其表达模式分析[J]. 生物技术通报, 2025, 41(9): 242-255. |
| [2] | 徐小萍, 杨成龙, 和兴, 郭文杰, 吴健, 方少忠. 百合LoAPS1克隆及其在休眠解除过程的功能分析[J]. 生物技术通报, 2025, 41(9): 195-206. |
| [3] | 董向向, 缪百灵, 许贺娟, 陈娟娟, 李亮杰, 龚守富, 朱庆松. 森林草莓FveBBX20基因的生物信息学分析及开花调控功能[J]. 生物技术通报, 2025, 41(9): 115-123. |
| [4] | 李珊, 马登辉, 马红义, 姚文孔, 尹晓. 葡萄SKP1基因家族鉴定与表达分析[J]. 生物技术通报, 2025, 41(9): 147-158. |
| [5] | 关陟昊, 单治易, 熊赫, 赵瑞雪. 基于计算文献的大豆耦合性状知识发现研究[J]. 生物技术通报, 2025, 41(9): 345-356. |
| [6] | 刘佳丽, 宋经荣, 赵文宇, 张馨元, 赵子洋, 曹一博, 张凌云. 蓝莓R2R3-MYB基因鉴定及类黄酮调控基因表达分析[J]. 生物技术通报, 2025, 41(9): 124-138. |
| [7] | 李亚涛, 张志鹏, 赵梦瑶, 吕镇, 甘恬, 魏浩, 吴书凤, 马玉超. 根瘤菌Bd1的全基因组分析及TetR3对细胞生长和结瘤的负调控功能[J]. 生物技术通报, 2025, 41(9): 289-301. |
| [8] | 赖诗雨, 梁巧兰, 魏列新, 牛二波, 陈应娥, 周鑫, 杨思正, 王博. NbJAZ3在苜蓿花叶病毒侵染本氏烟过程中的作用[J]. 生物技术通报, 2025, 41(8): 186-196. |
| [9] | 朱丽娟, 张锴, 温晓蕾, 褚佳豪, 史凤玉, 王艳丽. 基于WGCNA挖掘野生大豆耐镉关键基因[J]. 生物技术通报, 2025, 41(8): 124-136. |
| [10] | 腊贵晓, 赵玉龙, 代丹丹, 余永亮, 郭红霞, 史贵霞, 贾慧, 杨铁钢. 红花质膜H+-ATPase基因家族成员鉴定及响应低氮低磷胁迫的表达分析[J]. 生物技术通报, 2025, 41(8): 220-233. |
| [11] | 翟莹, 计俊杰, 陈炯辛, 于海伟, 李珊珊, 赵艳, 马天意. 异源过表达大豆GmNF-YB24提高转基因烟草抗旱性[J]. 生物技术通报, 2025, 41(8): 137-145. |
| [12] | 牛景萍, 赵婧, 郭茜, 王书宏, 赵晋忠, 杜维俊, 殷丛丛, 岳爱琴. 基于WGCNA鉴定大豆抗大豆花叶病毒NAC转录因子及其诱导表达分析[J]. 生物技术通报, 2025, 41(7): 95-105. |
| [13] | 龚钰涵, 陈兰, 尚方慧子, 郝灵颖, 刘硕谦. 茶树TRB基因家族鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(7): 214-225. |
| [14] | 李凯月, 邓晓霞, 殷缘, 杜亚彤, 徐元静, 王竞红, 于耸, 蔺吉祥. 蓖麻LEA基因家族的鉴定和铝胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 128-138. |
| [15] | 谭玉荣, 陈东亮, 杨守臻, 赖振光, 唐向民, 孙祖东, 曾维英. 大豆抗豆卷叶螟GmKTI1-like的功能研究[J]. 生物技术通报, 2025, 41(6): 99-108. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||