生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1136
谭玉荣1,2(
), 陈东亮1, 杨守臻1, 赖振光1, 唐向民1, 孙祖东1(
), 曾维英1(
)
收稿日期:2024-11-24
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
曾维英,女,硕士,副研究员,研究方向 :作物遗传育种;E-mail: zengweiying_1981@163.com作者简介:谭玉荣,女,硕士,助理研究员,研究方向 :作物遗传育种;E-mail: tanyurong11@163.com
基金资助:
TAN Yu-rong1,2(
), CHEN Dong-liang1, YANG Shou-zhen1, LAI Zhen-guang1, TANG Xiang-min1, SUN Zu-dong1(
), ZENG Wei-ying1(
)
Received:2024-11-24
Published:2025-06-26
Online:2025-06-30
摘要:
目的 Kunitz型胰蛋白酶抑制剂在增强植物抵抗害虫方面发挥重要作用。前期研究表明胰蛋白酶抑制剂GmKTI1-like与大豆抗豆卷叶螟密切相关,探究GmKTI1-like基因在豆卷叶螟胁迫中的功能,为培育抗虫新品种提供重要抗性基因和育种新材料。 方法 从大豆叶片中克隆GmKTI1-like,利用生物信息学方法对其理化性质、蛋白质结构、染色体物理定位、亚细胞定位进行分析,采用RT-qPCR分析不同组织中GmKTI1-like的表达模式;利用农杆菌介导法获得转基因植株,经过多年的分子生物学和表型鉴定,筛选携带目标基因且遗传稳定的转基因抗虫大豆新种质,对其进行接虫鉴定及胰蛋白酶抑制剂酶活测定。 结果 GmKTI1-like位于第1染色体上,其编码的GmKTI1-like包含1个KTI结构域和1个跨膜结构域,亚细胞定位分析表明,GmKTI1-like定位于细胞膜上;荧光定量PCR显示,GmKTI1-like在大豆叶片中表达量最高;与野生型(WT)相比,豆卷叶螟胁迫下,转基因大豆植株抗虫性显著增强、胰蛋白酶抑制剂含量高。 结论 过表达大豆GmKTI1-like转基因株系抗虫性能力显著提高,说明其在大豆抗豆卷叶螟的防御反应中发挥重要作用。
谭玉荣, 陈东亮, 杨守臻, 赖振光, 唐向民, 孙祖东, 曾维英. 大豆抗豆卷叶螟GmKTI1-like的功能研究[J]. 生物技术通报, 2025, 41(6): 99-108.
TAN Yu-rong, CHEN Dong-liang, YANG Shou-zhen, LAI Zhen-guang, TANG Xiang-min, SUN Zu-dong, ZENG Wei-ying. Functioal Analysis on GmKTI1-like Gene of Soybean Resistance to Bean Pyralid (Lamprosema indicata)[J]. Biotechnology Bulletin, 2025, 41(6): 99-108.
| 用途Usage | 引物和探针名称 Primer and probe name | 引物序列 Primer sequence (5′‒3′) |
|---|---|---|
| 普通PCR | CP4-EPSPS-F CP4-EPSPS-R | CCTTCATGTTCGGCGGTCTCG GCGTCATGATCGGCTCGATG |
GmKTI1-like J-F GmKTI1-like J-R | ATGAAGAGTACCTTGTTCGCC CATGCAGATGAAAGAGTTAATCCT | |
| qPCR | CYP2-F CYP2-R | CGGGACCAGTGTTCTTCTTCA CCCCTCCACTACAAAGGCTCG |
GmKTI1-like Q-F GmKTI1-like Q-R | TACCTTGTTCGCCCTCTTTCTACTT GCATATTCTATTCCACCGCCGTTTA | |
| TaqMan qPCR | Lectin-F Lectin-R Probe1 | CTCTACTCCACCCCCATCCA GAAGGAAGCGGCGAAGCT FAM-TGGGACAAAGAAACCGGTAGCGTTGC-TAMRA |
Nos-F Nos-R Probe2 | ACGATTTCAAGCGCATCATC TCACTATTCACCAGTAACAGCAG FAM-TATAAGTATCTTCCTGGG-TAMRA |
表1 本研究所用引物及探针
Table 1 Primers and probes used in this study
| 用途Usage | 引物和探针名称 Primer and probe name | 引物序列 Primer sequence (5′‒3′) |
|---|---|---|
| 普通PCR | CP4-EPSPS-F CP4-EPSPS-R | CCTTCATGTTCGGCGGTCTCG GCGTCATGATCGGCTCGATG |
GmKTI1-like J-F GmKTI1-like J-R | ATGAAGAGTACCTTGTTCGCC CATGCAGATGAAAGAGTTAATCCT | |
| qPCR | CYP2-F CYP2-R | CGGGACCAGTGTTCTTCTTCA CCCCTCCACTACAAAGGCTCG |
GmKTI1-like Q-F GmKTI1-like Q-R | TACCTTGTTCGCCCTCTTTCTACTT GCATATTCTATTCCACCGCCGTTTA | |
| TaqMan qPCR | Lectin-F Lectin-R Probe1 | CTCTACTCCACCCCCATCCA GAAGGAAGCGGCGAAGCT FAM-TGGGACAAAGAAACCGGTAGCGTTGC-TAMRA |
Nos-F Nos-R Probe2 | ACGATTTCAAGCGCATCATC TCACTATTCACCAGTAACAGCAG FAM-TATAAGTATCTTCCTGGG-TAMRA |
图1 GmKTI1-like的氨基酸序列分析与结构预测A:GmKTI1-like氨基酸序列分析;B:保守结构域;C:大豆GmKTI1-like与其他KTI1-like的氨基酸序列比对;D:GmKTI1-like基因在大豆染色体中的定位;E:三级结构;F:信号肽预测
Fig. 1 Amino acid sequence analysis and structure prediction of GmKTI1-likeA: Amino acid sequence analysis. B: Conservative domain. C: Comparison. D: Distribytion of GmKTI1-like gene on soybean chrommosomes. D: Signal peptide. E: Tertiary structure of the protein
图3 GmKTI1-like基因在大豆不同组织中的表达模式A:转录组测序数据分析GmKTI1-like在不同组织的表达;B: RT-qPCR验证GmKTI1-like的组织表达模式。不同小写字母表示不同组织器官间差异显著(P≤0.05)。下同
Fig. 3 Expression pattern of GmKTI1-like gene in different tissues of soybeanA: Expression pattem of GmKTI1-like in different tissues of soybean based on RNA-seq data. B: RT-qPCR assays of the tissue expression pattern of GmKTI1-like in different tissues of soybean. Different letters in the figure indicate significant differences (P≤0.05). The same below
图4 部分过表达植株的分子检测A:外源基因CP4-EPSPS的蛋白试纸条检测;B:外源基因CP4-EPSPS的PCR检测;C:GmKTI1-like的PCR检测;M1: DL 2000 DNA marker;M2: BM 2000+ DNA marker
Fig. 4 Molecular detection of some overexpressed plantsA: Protein test strip assay detection of the exogenous gene CP4-EPSPS. B: PCR detection of the exogenous gene CP4-EPSPS. C: PCR detection of the gene GmKTI1-like; M1: DL 2000 DNA marker; M2: BM2000+ DNA marker
图5 部分转基因大豆植株目标基因GmKTI1-like的表达水平CK为非转基因株系,其他为转基因株系
Fig. 5 Expressions of the target gene GmKTI1-like in some transgenic soybean plantsCK indicates non-transgenic line, other lines indicate transgenic line
| T1代植株编号 T1 plant No. | CtR (Lectin) | CtX (Nos) | X0/R0 |
|---|---|---|---|
| GmKTI1-like-4-8 | 26.66 | 28.64 | 1.01 |
| GmKTI1-like-5-9 | 27.20 | 28.71 | 1.05 |
| GmKTI1-like-6-4 | 26.80 | 27.22 | 1.10 |
| GmKTI1-like-6-9 | 24.72 | 28.78 | 0.88 |
| GmKTI1-like-7-2 | 27.57 | 28.68 | 1.08 |
| GmKTI1-like-9-2 | 26.31 | 28.71 | 0.98 |
| GmKTI1-like-12-1 | 27.79 | 28.90 | 1.08 |
| GmKTI1-like-15-6 | 25.91 | 28.08 | 0.99 |
表2 T2代转基因大豆植株外源序列拷贝数
Table 2 Copy number of exogenous sequences in transgenic soybean plants of T2 generation
| T1代植株编号 T1 plant No. | CtR (Lectin) | CtX (Nos) | X0/R0 |
|---|---|---|---|
| GmKTI1-like-4-8 | 26.66 | 28.64 | 1.01 |
| GmKTI1-like-5-9 | 27.20 | 28.71 | 1.05 |
| GmKTI1-like-6-4 | 26.80 | 27.22 | 1.10 |
| GmKTI1-like-6-9 | 24.72 | 28.78 | 0.88 |
| GmKTI1-like-7-2 | 27.57 | 28.68 | 1.08 |
| GmKTI1-like-9-2 | 26.31 | 28.71 | 0.98 |
| GmKTI1-like-12-1 | 27.79 | 28.90 | 1.08 |
| GmKTI1-like-15-6 | 25.91 | 28.08 | 0.99 |
图7 室内接虫鉴定A:接虫48 h后叶片啃食情况(a,b为非转基因植株,c‒i为转基因植株);B:接虫48 h后剩余叶片重量(CK为非转基因植株,其他为转基因植株)
Fig. 7 Identification of indoor inoculationA: Leaf feeding after 48 h of inoculation (a, b indicate non-transgenic plants, c‒i indicate transgenic plants). B: Weight of remaining leaves after 48 h of inoculation (CK indicates non-transgenic plants, others indicate transgenic plants)
图8 GmKTI1-like过表达株系受豆卷叶螟胁迫后胰蛋白酶抑制剂的酶活**表示不同株系间P≤0.01水平下存在极显著差异;WT为非转基因植株,其他为转基因植株
Fig. 8 Enzymatic activities of trypsin inhibitors in GmKTI1-like overexpressed lines subjected to bean leaf roller stress** indicates highly significant differences between strains at the P≤0.01 level. CK indicates non-transgenic plants, others indicate transgenic plants
| 1 | 曾维英, 蔡昭艳, 张志鹏, 等. 大豆抗豆卷叶螟的生理生化特性研究 [J]. 南方农业学报, 2015, 46(12): 2112-2116. |
| Zeng WY, Cai ZY, Zhang ZP, et al. Physiological and biochemical characteristics of Lamprosema indicata (Fabricius)-resistant soybean [J]. J South Agric, 2015, 46(12): 2112-2116. | |
| 2 | 崔章林, 盖钧镒, 吉东风, 等. 南京地区大豆食叶性害虫种类调查与分析 [J]. 大豆科学, 1997, 16(1): 12-20. |
| Cui ZL, Gai JY, Ji DF, et al. A study on leaf-feeding insect species on soybeans in Nanjing area [J]. Soybean Sci, 1997, 16(1): 12-20. | |
| 3 | 崔章林, 盖钧镒. 大豆抗食叶性害虫研究进展 [J]. 大豆科学, 1996, 15(2): 149-158. |
| Cui ZL, Gai JY. A dvance of study on soybean leaf-feeding insects [J]. Soybean Sci, 1996, 15(2): 149-158. | |
| 4 | 姜海平. 大豆卷叶螟的发生与防治 [J]. 上海农业科技, 2002(2): 80-81. |
| Jiang HP. Occurrence and control of soybean leaf roller [J]. Shanghai Agric Sci Technol, 2002(2): 80-81. | |
| 5 | 邢光南, 谭连美, 刘泽稀楠, 等. 大豆地方品种叶片叶柄茸毛性状的形态变异及其与豆卷叶螟抗性的相关分析 [J]. 大豆科学, 2012, 31(5): 691-696. |
| Xing GN, Tan LM, Liu ZXN, et al. Morphological variation of pubescence on leaf blade and petiole and their correlation with resistance to bean pyralid (Lamprosema indicata Fabricius) in soybean landraces [J]. Soybean Sci, 2012, 31(5): 691-696. | |
| 6 | 李新畅, 崔娟, 徐伟, 等. 温度对豆卷叶螟Lamprosema indicata (Fabricius)生长发育的影响 [J]. 大豆科学, 2018, 37(4): 590-595. |
| Li XC, Cui J, Xu W, et al. Effects of temperature on growth and development of Lamprosema indicata (Fabricius) [J]. Soybean Sci, 2018, 37(4): 590-595. | |
| 7 | 孙祖东, 杨守臻, 陈怀珠, 等. 大豆对豆卷叶螟的抗性鉴定 [J]. 中国油料作物学报, 2005, 27(4): 69-71. |
| Sun ZD, Yang SZ, Chen HZ, et al. Identification of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) and oviposition preference of bean pyralid on soybean varieties [J]. Chin J Oil Crop Scieves, 2005, 27(4): 69-71. | |
| 8 | Xing GN, Zhou B, Wang YF, et al. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean [J]. Theor Appl Genet, 2012, 125(5): 859-875. |
| 9 | 李广军, 程利国, 张国政, 等. 大豆对豆卷叶螟抗性的主基因+多基因混合遗传 [J]. 大豆科学, 2008, 27(1): 33-36, 41. |
| Li GJ, Cheng LG, Zhang GZ, et al. Mixed major-gene plus polygenes inheritance analysis for resistance in soybean to bean pyralid (Lamprosema indicata Fabricius) [J]. Soybean Sci, 2008, 27(1): 33-36, 41. | |
| 10 | Zeng WY, Sun ZD, Lai ZG, et al. Determination of the MiRNAs related to bean pyralid larvae resistance in soybean using small RNA and transcriptome sequencing [J]. Int J Mol Sci, 2019, 20(12): 2966. |
| 11 | 曾维英, 孙祖东, 赖振光, 等. 大豆抗豆卷叶螟的转录组和蛋白质组关联分析 [J]. 中国农业科学, 2018, 51(7): 1244-1260. |
| Zeng WY, Sun ZD, Lai ZG, et al. Correlation analysis on transcriptomic and proteome of soybean resistance to bean pyralid (Lamprosema indicata) [J]. Sci Agric Sin, 2018, 51(7): 1244-1260. | |
| 12 | Zeng WY, Sun ZD, Cai ZY, et al. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema indicate [J]. BMC Genomics, 2017, 18(1): 444. |
| 13 | Zeng WY, Sun ZD, Cai ZY, et al. Comparative transcriptome analysis of soybean response to bean pyralid larvae [J]. BMC Genomics, 2017, 18(1): 871. |
| 14 | Bendre AD, Ramasamy S, Suresh CG. Analysis of Kunitz inhibitors from plants for comprehensive structural and functional insights [J]. Int J Biol Macromol, 2018, 113: 933-943. |
| 15 | Jofuku KD, Goldberg RB. Kunitz trypsin inhibitor genes are differentially expressed during the soybean life cycle and in transformed tobacco plants [J]. Plant Cell, 1989, 1(11): 1079-1093. |
| 16 | Guerra Y, Valiente PA, Pons T, et al. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop? [J]. J Struct Biol, 2016, 195(2): 259-271. |
| 17 | Koide T, Ikenaka T. Studies on soybean trypsin inhibitors [J]. Eur J Biochem, 1973, 32(3): 417-431. |
| 18 | Song SI, Kim CH, Baek SJ, et al. Nucleotide sequences of cDNAs encoding the precursors for soybean (Glycine max) trypsin inhibitors (Kunitz type) [J]. Plant Physiol, 1993, 101(4): 1401-1402. |
| 19 | Gatehouse A, Shi Y, Powell K, et al. Approaches to insect resistance using transgenic plants [J]. Phil Trans R Soc Lond B, 1993, 342(1301): 279-286. |
| 20 | Sagili RR, Pankiw T, Zhu-Salzman K. Effects of soybean trypsin inhibitor on hypopharyngeal gland protein content, total midgut protease activity and survival of the honey bee (Apis mellifera L.) [J]. J Insect Physiol, 2005, 51(9): 953-957. |
| 21 | Chougule NP, Doyle E, Fitches E, et al. Biochemical characterization of midgut digestive proteases from Mamestra brassicae (Cabbage Moth; Lepidoptera: Noctuidae) and effect of soybean Kunitz inhibitor (SKTI) in feeding assays [J]. J Insect Physiol, 2008, 54(3): 563-572. |
| 22 | Jamal F, Pandey PK, Singh D, et al. Serine protease inhibitors in plants: nature's arsenal crafted for insect predators [J]. Phytochem Rev, 2013, 12(1): 1-34. |
| 23 | Jagdish M, Koundal KR. Constitutive expression of protease inhibitor gene isolated from black gram (Vigna mungo L.) confers resistance to Spodoptera litura in transgenic tobacco plants [J]. Indian J Biotechnol, 2020, 19(2): 94-101. |
| 24 | Khalf M, Goulet C, Vorster J, et al. Tubers from potato lines expressing a tomato Kunitz protease inhibitor are substantially equivalent to parental and transgenic controls [J]. Plant Biotechnol J, 2010, 8(2): 155-169. |
| 25 | 何雨娟, 鞠迪, 王悦, 等. 水稻蛋白酶抑制剂基因OsLTPL164和OsLTPL151的组成型及诱导型表达模式 [J]. 中国农业科学, 2018, 51(12): 2311-2321. |
| He YJ, Ju D, Wang Y, et al. Compositive and inductive expression patterns of protease inhibitor genes OsLTPL164 and OsLTPL151 in rice (Oryza sativa) [J]. Sci Agric Sin, 2018, 51(12): 2311-2321. | |
| 26 | 张洪伟. 转移蛋白酶抑制剂基因RNAi表达载体转化大豆的遗传变异研究 [D]. 长春: 吉林农业大学, 2008. |
| Zhang HW. Study on genetic variation of soybean transformed by RNAi expression vector of transferase inhibitor gene [D]. Changchun: Jilin Agricultural University, 2008. | |
| 27 | Weng HB, Pan AH, Yang LT, et al. Estimating number of transgene copies in transgenic rapeseed by real-time PCR assay with HMG I/Y as an endogenous reference gene [J]. Plant Mol Biol Report, 2004, 22(3): 289-300. |
| 28 | 胡壮壮, 徐先超, 潘霖, 等. 不同生殖生长期大豆器官对斜纹夜蛾抗性分析 [J]. 大豆科学, 2020, 39(6): 932-939. |
| Hu ZZ, Xu XC, Pan L, et al. Resistance analyses of soybean organs to common cutworm (Spodoptera litura) at different reproductive stages [J]. Soybean Sci, 2020, 39(6): 932-939. | |
| 29 | Mehmood S, Thirup SS, Ahmed S, et al. Crystal structure of kunitz-type trypsin inhibitor: entomotoxic effect of native and encapsulated protein targeting gut trypsin of Tribolium castaneum herbst [J]. Comput Struct Biotechnol J, 2024, 23: 3132-3142. |
| 30 | Belew M, Eaker D. The trypsin and chymotrypsin inhibitors in chick peas (Cicer arietinum L). Identification of the trypsin-reactive site, partial-amino-acid sequence and further physico-chemical properties of the major inhibitor [J]. Eur J Biochem, 1976, 62(3): 499-508. |
| 31 | Broadway RM, Duffey SS, Pearce G, et al. Plant Proteinase inhibitors: a defense against herbivorous insects? [J]. Entomol Exp Appl, 1986, 41(1): 33-38. |
| 32 | Meekins DA, Kanost MR, Michel K. Serpins in arthropod biology [J]. Semin Cell Dev Biol, 2017, 62: 105-119. |
| 33 | Rufino FPS, Pedroso VMA, Araujo JN, et al. Inhibitory effects of a Kunitz-type inhibitor from Pithecellobium dumosum (Benth) seeds against insect-pests' digestive proteinases [J]. Plant Physiol Biochem, 2013, 63: 70-76. |
| 34 | 牛蓓, 李锐, 杨林, 等. 一个麻风树Kunitz型蛋白酶抑制剂基因的克隆和鉴定 [J]. 四川大学学报: 自然科学版, 2016, 53(5): 1169-1176. |
| Niu B, Li R, Yang L, et al. Cloning and characterization of a Kunitz type protease inhibitor gene JcKTI from Jatropha curcas [J]. J Sichuan Univ Nat Sci Ed, 2016, 53(5): 1169-1176. | |
| 35 | Botelho-Júnior S, Machado OLT, Fernandes KVS, et al. Defense response in non-genomic model species: methyl jasmonate exposure reveals the passion fruit leaves' ability to assemble a cocktail of functionally diversified Kunitz-type trypsin inhibitors and recruit two of them against papain [J]. Planta, 2014, 240(2): 345-356. |
| [1] | 赵强, 陈思宇, 彭方丽, 汪灿, 高杰, 周棱波, 张国兵, 姜昱雯, 邵明波. 间作与施氮对高粱根际土壤细菌多样性及功能的影响[J]. 生物技术通报, 2025, 41(6): 307-316. |
| [2] | 陈永旗, 李志文, 李鑫, 原若曦, 王春旭, 韩毅强, 高亚梅. 黑土区大豆根际土壤放线菌的分离与功能研究[J]. 生物技术通报, 2025, 41(5): 255-266. |
| [3] | 李志强, 罗正乾, 徐琳黎, 周国慧, 屈丝雨, 刘恩良, 顼东婷. 基于T2T基因组鉴定大豆R2R3-MYB基因家族及干旱和盐胁迫下的表达分析[J]. 生物技术通报, 2025, 41(5): 141-152. |
| [4] | 赵婧, 郭茜, 李睿琦, 雷滢炀, 岳爱琴, 赵晋忠, 殷丛丛, 杜维俊, 牛景萍. 大豆GmGST基因簇基因序列分析及诱导表达分析[J]. 生物技术通报, 2025, 41(5): 129-140. |
| [5] | 林紫依, 吴一舟, 叶芳贤, 朱淑颖, 刘燕敏, 刘骕骦. 大豆GmPM31基因启动子响应高温高湿胁迫的功能分析[J]. 生物技术通报, 2025, 41(3): 90-97. |
| [6] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
| [7] | 刘克寒, 杨升辉, 黄巧云, 崔文靖. 黑龙江大豆根瘤菌及根际促共生菌株的筛选及应用[J]. 生物技术通报, 2025, 41(1): 252-262. |
| [8] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
| [9] | 高萌萌, 赵天宇, 焦馨悦, 林春晶, 关哲允, 丁孝羊, 孙妍妍, 张春宝. 大豆细胞质雄性不育系及其恢复系的比较转录组分析[J]. 生物技术通报, 2024, 40(7): 137-149. |
| [10] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
| [11] | 白志元, 徐菲, 杨午, 王明贵, 杨玉花, 张海平, 张瑞军. 大豆细胞质雄性不育弱恢复型杂种F1育性转变的转录组分析[J]. 生物技术通报, 2024, 40(6): 134-142. |
| [12] | 娄银, 高浩竣, 王茜, 牛景萍, 王敏, 杜维俊, 岳爱琴. 大豆GmHMGS基因的鉴定及表达模式分析[J]. 生物技术通报, 2024, 40(4): 110-121. |
| [13] | 刘奕君, 闫伟, 何禹璇, 董立明, 龙丽坤, 李飞武. 转基因大豆多靶标质粒DNA标准分子的研制及应用[J]. 生物技术通报, 2024, 40(11): 169-183. |
| [14] | 李炯珊, 杨泽, 闫星, 刘义珍, 郭宇双, 薛金爱, 孙希平, 季春丽, 张春辉, 李润植. 四尾栅藻提高大豆草甘膦抗性及促生效应分析[J]. 生物技术通报, 2024, 40(11): 236-247. |
| [15] | 韩乐乐, 宋文迪, 边嘉珅, 李阳, 杨双胜, 陈紫怡, 李晓薇. 转录组与代谢组联合分析揭示大豆GmERD15c参与盐胁迫下类黄酮的生物合成[J]. 生物技术通报, 2024, 40(10): 243-252. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||