生物技术通报 ›› 2014, Vol. 0 ›› Issue (2): 47-55.
高恶斌, 王子乾
收稿日期:
2013-09-16
出版日期:
2014-02-27
发布日期:
2014-02-27
作者简介:
高恶斌,男,博士,研究方向:微生物分子生态学;E-mail: gaofei7908@126.com
基金资助:
Gao Ebin, Wang Ziqian
Received:
2013-09-16
Published:
2014-02-27
Online:
2014-02-27
摘要: 病毒是海洋及淡水微生物群落的重要组成部分,在调控微生物环路、驱动生物地球化学循环、维持浮游植物与细菌多样性等方面扮演着重要角色。然而,传统的病毒培养及定量技术难以对浮游病毒群落结构与多样性进行深入而全面的解析。微生物分子生态学技术的快速发展及广泛应用为此提供了新的途径。概述了克隆文库分析方法、凝胶脉冲场电泳(PFGE)技术、DNA指纹图谱、DNA微阵列、宏基因组技术等分子生物学方法的基本概念及其在研究浮游病毒的种群结构与遗传多样性及其与环境因素之间的相互关系等方面的应用状况。
高恶斌, 王子乾. 分子生物学方法在浮游病毒多样性研究中的应用[J]. 生物技术通报, 2014, 0(2): 47-55.
Gao Ebin, Wang Ziqian. Application of Molecular Biological Methods to Research on the Genetic Diversities of Virioplankton[J]. Biotechnology Bulletin, 2014, 0(2): 47-55.
[1] Bettarel Y, Sime-Ngando T, Amblard C, Dolan J. Viral activity in two contrasting lake ecosystems[J]. Appl Environ Microbiol, 2004, 70:2941-2951. [2] Suttle CA. Viruses in the sea[J]. Nature, 2005, 437:365-361. [3] Bergh O, Borsheim KY, Bratbak G. High abundance of viruses found in aquatic environments[J]. Nature, 1989, 340:467-468. [4] Suttle CA. Marine viruses—Major players in the global ecosystem[J]. Nat Rev Microbiol, 2007, 5:801-812. [5] Fuhrman JA. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399:541-548. [6] 张奇亚, 桂建芳.一类不可忽视的站略生物资源——淡水与海水中的病毒及其在生态系统中的作用[J]. 中国科学院院刊, 2009, 24:414-420. [7] 焦念志. 海洋微型生物生态学[M]. 北京:科学出版社, 2006. 272-303. [8] Wommack KE, Ravel J, Hill RT. Population dynamics of chesapeake bay virioplankton:total community analysis by pulsed-field gel electrophoresis[J]. Appl Environ Microbiol, 1999, 65:231-240. [9] Weinbauer MG. Ecology of prokaryotic viruses[J]. FEMS Microbiol Rev, 2004, 28:127-181. [10] Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea[J]. Bio Science, 1999, 49:781-788. [11] Weinbauer MG, Rassoulzadegan F. Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2003, 6:1-11. [12] Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea—viruses play critical roles in the structure and function of aquatic food webs[J]. Bioscience, 1999, 49:781-788. [13] Chiura HX. Generalized gene transfer by virus-like particles from marine bacteria[J]. Aquat Microb Ecol, 1997, 13:75-83. [14] Hill RW, White BA, Cottell MT, et al. Virus-mediated total release of dimethysulfoniopropionate from marine phytoplankton:a potential climate process[J]. Aquat Microb Ecol, 1998, 14:1-6. [15] Wommack KE, Colwell RR. Virioplankton:Viruses in aquatic ecosystems[J]. Microbiol Mol Biol Rev, 2000, 64:69-114. [16] Brussaard CP. Viral control of phytoplankton populations—a review[J]. J Eukaryot Microbiol, 2004, 51:125-138. [17] Bratbak G, Egge JK, Heldal M, et al. Viral mortality of the marine alga Emiliania huxleyi(Haptophyceae)and termination of algal blooms[J]. Mar Ecol Prog Ser, 1993, 93:39-48. [18] Gao EB, Yuan XP, Li RH, Zhang QY. Isolation of a novel cyanophage infectious to filamentous cyanobacterium Planktothrix agardhii(Cyanophyceae)from Lake Donghu in China[J]. Aquat Microb Ecol, 2009, 54:163-170. [19] Fuller NJ, Wilson WH, Joint IR, et al. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCR-based detection and quantification techniques[J]. Appl Environ Microbiol, 1998, 64:205-2060. [20] Zhong Y, Chen F, Wilhelm SW, et al. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20[J]. Appl Environ Microbiol, 2002, 68:1576-1584. [21] Wilhelm SW, Carberry MJ, Eldridge ML, et al. Marine and freshwater cyanophages in a laurentian great lake:evidence from infectivity assays and molecular analyses of g20 genes[J]. Appl Environ Microbiol, 2006, 72:4957-4963. [22] Short SM, Suttle CA. Use of polymerase chain reaction and denaturing gradient gel electrophoresis to study diversity in natural virus communities[J]. Hydrobiologia, 1999, 401:19-32. [23] Labonté JM, Reid KE, Suttle CA. Phylogenetic analysis indicates evolutionary diversity and environmental segregation of marine podovirus DNA polymerase gene sequences[J]. Appl Environ Microbiol, 2009, 75:3634-3640. [24] Chen F, Wang K, Huang S, et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences[J]. Environ Microbiol, 2009, 11:2884-2892. [25] Huang S, Wilhelm SW, Jiao N, et al. Ubiquitous cyanobacterial podoviruses in the global oceans unveiled through viral DNA polymerase gene sequences[J]. The ISME Journal, 2010, 4:1243-1251. [26] Sullivan MB, Coleman ML, Weigele P, et al. Three Prochlorococcus cyanophage genomes:Signature features and ecological interpre-tations[J]. PLoS Biol, 2005, 3:e144. [27] Breitbart M, Thompson LR, Suttle CA, Sullivan MB. Exploring the vast diversity of marine viruses[J]. Oceanography, 2007, 20:135-139. [28] Thompson LR, Zeng QL, Kelly L, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proc Natl Acad Sci USA, 2012, 108:757-764. [29] Alperovitch-Lavy A, Sharon I, Rohwer F, et al. Reconstructing a puzzle:existence of cyanophages containing both photosystem-I and photosystem-II gene suites inferred from oceanic metagenomic datasets[J]. Environ Microbiol, 2011, 13:24-32. [30] Chénard C, Suttle CA. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters[J]. Appl Environ Microbiol, 2008, 74:5317-5324. [31] Gross M, Marianovsky I, Glaser G. MazG-a regulator of programmed cell death in Escherichia coli[J]. Molecular Microbiology, 2006, 59:590-601. [32] Bryan MJ, Burroughs NJ, Spence EM, et al. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer[J]. PLoS ONE, 2008, 3:1-12. [33] Klieve AV, Swain RA. Estimation of ruminal bacteriophage numbers by pulsed-field gel electrophoresis and laser densitometry[J]. Appl Environ Microbiol, 1993, 59:2299-2303. [34] Castberg T, Larsen A, Brussaard C, et al. Microbial population dyn-amics and diversity during blooms of the marine coccolithophorid Emiliania huxleyi(Haptophyta)[J]. Mar Ecol Prog Ser, 2001, 221:39-46. [35] Jiang S, Fu W, Fuhrman JA. The vertical distribution and diversity of marine bacteriophages at a station off Southern California[J]. Microb Ecol, 2003, 45:399-410. [36] Larsen A, Castberg T, Sandaa RA, et al. Population dynamics and diversity of phytoplankton, bacteria and virus in a seawater enclosure[J]. Mar Ecol Prog Ser, 2001, 221:47-57. [37] Larsen A, Fonnes GA, Sandaa RA, et al. Spring phytoplankton bloom in Norwegian coastal waters:microbial community dynamics, succession and diversity[J]. Limnol Oceanogr, 2004, 49:180-190. [38] Sandaa RA, Larsen A. Seasonal variations in virus-host populations in Norwegian coastal waters-focusing on the cyanophage community infecting marine Synechococcus spp[J]. Appl Environ Microbiol, 2006, 72:4610-4618. [39] 刘艳鸣, 张奇亚, 袁秀平. 利用脉冲场凝胶电泳测定东湖浮游病毒基因组的大小[J]. 武汉大学学报:理学版, 2005(S2):238-240. [40] Tijdens M, Hoogveld HL, Kamst-van Agterveld MP, et al. Population dynamics and diversity of viruses, bacteria and phytoplankton in a shallow eutrophic lake[J]. Microb Ecol, 2008, 56:29-42. [41] Steward GF, Montiel JL, Azam F. Genome size distributions indicate variability and similarities among marine viral assemblages from diverse environments[J]. Limnol Oceanography, 2000, 45:1697-1706. [42] Lindell D, Jaffe JD, Coleman ML, et al. Genome-wide expression dynamics of a marine virus and host reveal features of coevolution [J]. Nature, 2007, 449:83-86. [43] Lindell D, Jaffe JD, Johnson ZI, et al. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature, 2005, 438:86-89. [44] Sandaa RA, Clokie M, Mann NH. Photosynthetic genes in viral populations with a large genomic size range from Norwegian coastal waters[J]. Federation of European Microbiological Societies Microb Ecol, 2008, 63:2-11. [45] Chen F, Suttle CA, Short SM. Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes[J]. Appl Environ Microbiol, 1996, 62:2869-2874. [46] Marston MF, Sallee JL. Genetic civersity and temporal variation in the cyanophage community infecting marine synechococcus species in Rhode island’s coastal waters[J]. Appl Environ Microbiol, 2003, 69:4639-4647. [47] Jiang S, Fu W, Chu W, et al. The vertical distribution and diversity of marine bacteriophage at a station off southern California[J]. Microbial Ecology, 2003, 45:399-410. [48] Sobecky PA, Hazen TH. Horizontal gene transfer and mobile genetic elements in marine systems[J]. Methods in Molecular Biology, 2009, 532:435-453. [49] Wang K, Chen F. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay[J]. Aquat Microb Ecol, 2004, 34:105-116. [50] 汪岷, 闫群 噬藻体遗传多样性的研究进展[J]. 中国海洋大学学报:自然科学版, 2010(8):73-79. [51] Williams JG, Kubelik KAR, Livak KJ, et al. DNA Polymorphisms amplified by arbitray primers are useful as genetic markers[J]. Nucl Acid Res, 1990, 18:6531-6535. [52] Winget DM, Wommack KE. Randomly amplified polymorphic DNA PCR as a tool for assessment of marine viral richness[J]. Appl Environ Microbiol, 2008, 74:2612-2618. [53] Muyzer G, DeWaal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16SrRNA[J]. Appl Environ Microbiol, 1993, 59:695-700. [54] Short SM, Suttle CA. Sequence analysis of marine virus communities reveals that group s of related algal viruses are widely distributed in nature[J]. Appl Environ Microbiol, 2002, 68:1290-1296. [55] Short CM, Suttle CA. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments[J]. Appl Environ Microbiol, 2005, 71:480-486. [56] Wilson WH, Fuller NJ, Joint IR, et al. Analysis of cyanophage diversity in the marine environment using denaturing gradient gel electrophoresis[C]// Bell R, Brylinsky M, Johnson-Green P(ed.), Microbial biosystems:new frontier. Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, Nova Scotia, Canada:Atlantic Canada Society for Microbial Ecology, 2000:565-570. [57] Schroeder DC, Oke J, Hall M, et al. Virus succession observed during an Emiliania huxleyi bloom[J]. Appl Environ Microbiol, 2003, 69:2484-2490. [58] Dorigo U, Stecphan J, Humbert JF. Cyanophage diversity, inferred from g20 gene analyses, in the largest natural lake in france, lake bourget[J]. Appl Environ Microbiol, 2004, 70:1017-1022. [59] Chénard C, Suttle CA. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters[J]. Appl Environ Microbiol, 2008, 74:5317-5324. [60] Wommack KE, Ravel J, Hill RT, et al. Hybridization analysis of chesapeake bay virioplankton[J]. Appl Environ Microbiol, 1999, 65:241-250. [61] Allen MJ, Wilson WH. The coccolithovirus microarray:an array of uses[J]. Briefings In Functional Genomics And Proteomics, 2006, 5:273-279. [62] Allen MJ, Martinez J, Schroeder DC, et al. Use of microarrays to assess viral diversity from genotype to phenotype[J]. Environ Microbiol, 2007, 9:971-982. [63] Handelsman J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chem Biol, 1998, 5:245-249. [64] Breitbart M, Salamon P, Andresen B, et al. Genomic analysis of uncultured marine viral communities[J]. Proc Natl Acad Sci USA, 2002, 99:14250-14255. [65] Breitbart M, Felts B, Kelley S, et al. Diversity and population structure of a nearshore marine sediment viral community[J]. Proc Biol Sci, 2004, 271:565-574. [66] Angly FE, Felts B, Breitbart M, et al. The marine viromes of four oceanic regions[J]. Plos Biol, 2006, 4:2121-2131. [67] Bench SR, Hanson TE, Williamson KE, et al. Metagenomic characterization of chesapeake bay virioplankton[J]. Appl Environ Microbiol, 2007, 73:7629-7641. [68] Sime-Ngando T, Lucas S, Robin A, et al. Diversity of virus- host systems in hypersaline Lake Retba, Senegal[J]. Environ Microbiol, 2011, 13:1956-1972. [69] Sharon I, Alperovitch A, Rohwer F, et al. Photosystem I gene cassettes are present in marine virus genomes[J]. Nature, 2009, 461:258-262. |
[1] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[2] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[3] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[4] | 周晓楠, 徐金青, 雷雨晴, 王海庆. 基于GBS-seq的青藏扁蓿豆SNP标记开发[J]. 生物技术通报, 2022, 38(4): 303-310. |
[5] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[6] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[7] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[8] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[9] | 章妮, 暴涵, 左弟召, 陈克龙. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 2021, 37(11): 276-284. |
[10] | 王衍莉, 杨义明, 范书田, 赵滢, 许培磊, 路文鹏, 李昌禹. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析[J]. 生物技术通报, 2021, 37(1): 189-197. |
[11] | 王宏杰, 刘绍东, 刘瑞华, 张思平, 杨君, 庞朝友. 轮作对棉花根际土壤细菌群落的影响[J]. 生物技术通报, 2020, 36(9): 117-124. |
[12] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[13] | 张永敏, 王天慧, 王萍. 沉积物中菲高效降解菌群的筛选鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 128-135. |
[14] | 张乐超, 刘月琴, 段春辉, 张英杰, 王泳, 郭云霞. 7个地方山羊品种遗传多样性及遗传结构分析[J]. 生物技术通报, 2020, 36(6): 183-190. |
[15] | 李勇慧, 于相丽, 马会萍, 高凯, 刘名雪. 不同品种牡丹ISSR遗传多样性分析[J]. 生物技术通报, 2020, 36(4): 78-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||