生物技术通报 ›› 2014, Vol. 0 ›› Issue (2): 56-63.
郭向贺1,2, 董颖2, 胡红霞2, 赵艳珍1
收稿日期:
2013-08-26
出版日期:
2014-02-27
发布日期:
2014-02-27
作者简介:
郭向贺,男,硕士研究生,研究方向:鱼类遗传育种;E-mail:guoxianghe@126.com
基金资助:
Guo Xianghe1,2, Dong Ying2, Hu Hongxia2, Zhao Yanzhen1,
Received:
2013-08-26
Published:
2014-02-27
Online:
2014-02-27
摘要: 鲟鱼是一类古老的大型经济鱼类,由于过度捕捞和人类对其生态环境的破坏及其鲟鱼自身具有的性成熟时间长、幼体成活率低等特点,使世界范围内的鲟鱼自然资源日趋枯竭。人工养殖鲟鱼已是鲟鱼制品的主要来源,但由于种质来源不清及大量杂交鲟的存在导致种质混乱情况比较严重,目前国内外均未有一套比较完善可行的鲟鱼种质鉴定体系。总结了目前进行鲟鱼种质鉴定的一些常用方法,分析了各个方法的优缺点,为确立一套稳定可靠的鲟鱼种质鉴定方法奠定基础。
郭向贺, 董颖, 胡红霞, 赵艳珍. 鲟鱼种质鉴定方法研究进展[J]. 生物技术通报, 2014, 0(2): 56-63.
Guo Xianghe, Dong Ying, Hu Hongxia, Zhao Yanzhen,. Research Progresses of Germplasm Identification Methods in Sturgeons[J]. Biotechnology Bulletin, 2014, 0(2): 56-63.
[1] Chapman BB, Skov C, Hulthen K, et al. Partial migration in fishes:definitions, methodologies and taxonomic distribution[J]. Journal of Fish Biology, 2012, 81(2):479-499. [2] Simeanu C, Simeanu D, Pasarin B. Research on physic-chemical indices of the meat of the sturgeon species polyodon spathula[J]. University of Agricultural Sciences and Veterinary Medicine Iasi, 2012, 57:230-233. [3] Gessner J, Wirth M, Kirschbaum F, et al. Caviar composition in wild and cultured sturgeons impact of food sources on fatty acid composition and contaminant load[J]. Journal of Applied Ichthyology, 2002, 18(4-6):665-672. [4] Waldman JR. Sturgeons and paddlefishes:a convergence of biology, politics, and greed[J]. Fisheries, 1995, 20(9):20-21. [5] Steffens W, Jahnichen H, Fredrich F. Possibilities of sturgeon culture in Central Europe[J]. Aquaculture, 1990, 89(2):101-122. [6] Ludwig A. Identification of Acipenseriformes species in trade[J]. Journal of Applied Ichthyology, 2008, 24(s1):2-19. [7] Gardiner BG. Sturgeons as living fossils[M]. New York:Springer New York, 1984:148-152. [8] Billard R, Lecointre G. Biology and conservation of sturgeon and paddlefish[J]. Reviews in Fish Biology and Fisheries, 2000, 10(4):355-392. [9] Bemis WE, Findeis EK. The sturgeons’ plight[J]. Nature, 1994, 370(6491):602-602. [10] Bemis WE, Findeis EK, Grande L. An overview of Acipenseriformes [J]. Environmental Biology of Fishes, 1997, 48(1-4):25-71. [11] Russell ES. Form and function:a contribution to the history of animal marphology[M]. London:Murray J, 1916. [12] 董志国, 常玉梅. 鱼类种质鉴定的主要技术与方法[J]. 水产学杂志, 2002, 15(2):74-77. [13] Vasil’Eva ED. Some morphological characteristics of Acipenserid fishes:considerations of their variability and utility in taxonomy[J]. Journal of Applied Ichthyology, 1999, 15(4-5):32-34. [14] Artyukhin EN. Morphological phylogeny of the order Acipenserifor-mes[J]. Journal of Applied Ichthyology, 2006, 22(s1):66-69. [15] 陈细华.鲟形目鱼类生物学与资源现状[M].北京:海洋出版社, 2007. [16] Zexia G, Weimin W, Yi Y, et al. Morphological studies of peripheral blood cells of the Chinese sturgeon, Acipenser sinensis[J]. Fish Physiology and Biochemistry, 2007, 33(3):213-222. [17] Artyukhin EN, Vecsei P, Peterson DL. Morphology and ecology of Pacific sturgeons[J]. Environmental Biology of Fishes, 2007, 79(3-4):369-381. [18] 张颖, 刘晓勇, 曲秋芝, 等. 达氏鳇, 施氏鲟及其杂交种(施氏鲟♂× 达氏鳇♀)形态差异与判别分析[J]. 淡水渔业, 2012, 42(6):27-32. [19] Bostein B, White RL, Skolnick M, et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms[J].American Journal of Human Genetics, 1980, 31(3):314-331. [20] Russell VJ, Hold GL, Pryde SE, et al. Use of restriction fragment length polymorphism to distinguish between salmon species[J]. Journal of Agricultural and Food Chemistry, 2000, 48(6):2184-2188. [21] Quinteiro J, Sotelo CG, Rehbein H, et al. Use of mtDNA direct polymerase chain reaction(PCR)sequencing and PCR-restriction fragment length polymorphism methodologies in species identification of canned tuna[J]. Journal of Agricultural and Food Chemistry, 1998, 46(4):1662-1669 . [22] Cocolin L, D’Agaro E, Manzano M, et al. Rapid PCR-RFLP method for the identification of marine fish fillets(seabass, seabream, umbrine, and dentex)[J]. Journal of Food Science, 2000, 65(8):1315-1317. [23] Aranishi F, Okimoto T, Izumi S. Identification of gadoid species(Pisces, Gadidae)by PCR-RFLP analysis[J]. J Appl Genet, 2005, 46(1):69-73. [24] Wolf C, Hubner P, Luthy J. Differentiation of sturgeon species by PCR-RFLP[J]. Food Research International, 1999, 32(10):699-705. [25] Ludwig A, Debus L, Jenneckens I. A molecular approach to control the international trade in black caviar[J]. International review of hydrobiology, 2002, 87(5-6):661-674. [26] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms[J]. Proceedings of the National Academy of Sciences, 1989, 86(8):2766-2770. [27] 张学, 孙开来. PCR-SSCP分析技术及其应用[J].国际遗传学杂志, 1992, 5:225-231. [28] 李玉梅, 姚纪元, 吴静, 等. PCR- SSCP 技术的研究及应用进展[J].生物技术通报, 2007(6):71-74. [29] Hara M, Noguchi M, Naito E, et al. Ribosomal RNA gene typing of fish genome using PCR-SSCP[polymerase chain reaction-single strand conformation polymorphism]method[J]. Bulletin of the Japan Sea National Fisheries Research Institute, 1994, 44:131-138. [30] Rehbein H, Mackie IM, Pryde S, et al. Fish species identification in canned tuna by DNA analysis(PCR-SSCP)[J]. Inf Fischereiforsch, 1995, 42(4):209-212. [31] Rehbein H, Kress G, Schmidt T. Application of PCR-SSCP to species identification of fishery products[J]. Journal of the Science of Food and Agriculture, 1997, 74(1):35-41. [32] Rehbein H, Gonzales-Sotelo C, Perez-Martin R, et al. Differentiation of sturgeon caviar by single strand conformation polymorphism(PCR-SSCP)analysis[J]. Archiv Fur Lebensmittelhygiene, 1999, 50:13-16. [33] Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18(22):6531-6535. [34] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Research, 1990, 18(24):7213-7218. [35] Dong Z, Zhou E. Application of the random amplified polymorphic DNA technique in a study of heterosis in common carp, Cyprinus carpio L.[J]. Aquaculture Research, 1998, 29(8):595-600. [36] Chong LK, Tan SG, Yusoff K, et al. Identification and characteriza-tion of Malaysian river catfish, Mystus nemurus(C&V):RAPD and AFLP analysis[J]. Biochemical Genetics, 2000, 38(3-4):63-76. [37] Bardakci F, Skibinski DO. Application of the RAPD technique in tilapia fish:species and subspecies identification[J]. Heredity, 1994, 73:117. [38] Foo CL, Dinesh KR, Lim TM, et al. Inheritance of RAPD markers in the guppy fish, Poecilia reticulata[J]. Zoological Science, 1995, 12(5):535-541. [39] Van Eenennaam AL, Van Eenennaam JP, Medrano JF, et al. Rapid verification of meiotic gynogenesis and polyploidy in white sturgeon[J]. Aquaculture, 1996, 147(3):177-189. [40] Rezvani Gilkolaei S. Molecular population genetic studies of sturgeon species in the South Caspian Sea[D]. Wales, University of Swansea, 1997. [41] Barmintsev VA, Chudinov OS, Abramova AB. Molecular and biological methods of identification and certification of sturgeons and their products[J]. Fish Farming and Fishing, 2001, 1:70-71. [42] Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting:European, 0534858[P]. 2005-4-27. [43] Young WP, Wheeler PA, Coryell VH, et al. A detailed linkage map of rainbow trout produced using doubled haploids[J]. Genetics, 1998, 148(2):839-850. [44] Liu Z, Nichols A, Li P, et al. Inheritance and usefulness of AFLP markers in channel catfish(Ictalurus punctatus), blue catfish(I. furcatus), and their F1, F2, and backcross hybrids[J]. Molecular and General Genetics MGG, 1998, 258(3):260-268. [45] Agresti JJ, Seki S, Cnaani A, et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci[J]. Aquaculture, 2000, 185(1):43-56. [46] Congiu L, Dupanloup I, Patarnello T, et al. Identification of interspecific hybrids by amplified fragment length polymorphism:the case of sturgeon[J]. Molecular Ecology, 2001, 10(9):2355-2359. [47] Congiu L, Fontana F, Patarnello T, et al. The use of AFLP in sturgeon identification[J]. Journal of Applied Ichthyology, 2002, 18(4-6):286-289. [48] Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene[J]. Ame J Hum Genet, 1989, 44(3):397-401. [49] 杨述林, 王志刚, 樊斌, 等.微卫星及其功能研究[J].湖北农业科学, 2003, 6:91-93. [50] Maltagliati F, Lai T, Casu M, et al. Identification of endangered Mediterranean cyprinodontiform fish by means of DNA inter-simple sequence repeats(ISSRs)[J]. Biochemical Systematics and Ecology, 2006, 34(8):626-634. [51] Jenneckens I, Meyer JN, Horstgen-Schwark G, et al. A fixed allele at microsatellite locus LS-39 exhibiting species-specificity for the black caviar producer Acipenser stellatus[J]. Journal of Applied Ichthyology, 2001, 17(1):39-42. [52] 胡佳, 汪登强, 危起伟, 等. 施氏鲟, 达氏鳇及其杂交子代的分子鉴定[J].中国水产科学, 2010, 17(1):21-30. [53] Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos[J]. Science, 2011, 334(6059):1141-1144. [54] Hubalkova Z, Kralik P, Kasalova J, et al. Identification of gadoid species in fish meat by polymerase chain reaction(PCR)on genomic DNA[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10):3454-3459. [55] Lin WF, Hwang DF. A multiplex PCR assay for species identifica-tion of raw and cooked bonito[J]. Food Control, 2008, 19(9):879-885. [56] Mendonca FF, Hashimoto DT, Porto-Foresti F, et al. Identification of the shark species Rhizoprionodon lalandii and R. porosus(Elasmobranchii, Carcharhinidae)by multiplex PCR and PCR-RFLP techniques[J]. Mol Ecol Resour, 2009, 9(3):771-773. [57] Rasmussen Hellberg RS, Morrissey MT, Hanner RH. A multiplex PCR method for the identification of commercially important salmon and trout species(Oncorhynchus and Salmo)in North America[J]. J Food Sci, 2010, 75(7):C595-C606. [58] DeSalle R, Birstein VJ. PCR identification of black caviar[J]. Nature, 1996, 381:197-198. [59] Birstein VJ, Doukakis P, Sorkin B, et al. Population aggregation analysis of three caviar-producing species of sturgeons and implications for the species identification of black caviar[J]. Conservation Biology, 1998, 12(4):766-775. [60] Mugue NS, Barmintseva AE, Rastorguev SM, et al. Polymorphism of the mitochondrial DNA control region in eight sturgeon species and development of a system for DNA-based species identification[J]. Russian Journal of Genetics, 2008, 44(7):793-798. [61] Higuchi R, Fockler C, Dollinger G, et al. Kinetic PCR analysis:real-time monitoring of DNA amplification reactions[J]. Biotechnology, 1993, 11:1026-1030. [62] Hird HJ, Hold GL, Chisholm J, et al. Development of a method for the quantification of haddock(Melanogrammus aeglefinus)in commercial products using real-time PCR[J]. European Food Research and Technology, 2005, 220(5-6):633-637. [63] Sanchez A, Quinteiro J, Rey-Mendez M, et al. Identification of European hake species(Merluccius merluccius)using real-time PCR[J]. J Agric Food Chem, 2009, 57(9):3397-3403. [64] Herrero B, Madrinan M, Vieites JM, et al. Authentication of Atlantic cod(Gadus morhua)using real time PCR[J]. Journal of Agricultural and Food Chemistry, 2010, 58(8):4794-4799. [65] Lopez I, Pardo MA. Application of relative quantification TaqMan real-time polymerase chain reaction technology for the identification and quantification of Thunnus alalunga and Thunnus albacares[J]. Journal of Agricultural and Food Chemistry, 2005, 53(11):4554-4560. [66] Hebert PD, Cywinska A, Ball SL. Biological identifications through DNA barcodes[J]. Proc Biol Sci, 2003, 270(1512):313-321. [67] Ward RD, Zemlak TS, Innes BH, et al. DNA barcoding Australia’s fish species[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2005, 360(1462):1847-1857. [68] 程鹏, 张爱兵, 王忠锁. 微型DNA条形码在鱼类识别上的应用[J].首都师范大学学报:自然科学版, 2012, 33(2):47-52. |
[1] | 蔡梦鲜, 高作敏, 胡利娟, 冯群, 王洪程, 朱斌. 天然甘蓝型油菜C染色体组C1,C2缺体的创建及遗传分析[J]. 生物技术通报, 2023, 39(3): 81-88. |
[2] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[3] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
[4] | 徐妙云, 邢利娟, 杨明雨, 张凌萱, 王磊, 刘悦萍. 高直链淀粉禾谷类作物种质创新与利用研究进展[J]. 生物技术通报, 2022, 38(4): 20-28. |
[5] | 杨雅舒, 汪颖, 高巍. 白灵侧耳野生种质群体生长发育相关性状评价[J]. 生物技术通报, 2021, 37(11): 101-108. |
[6] | 郑惠清, 郭仲杰, 蔡志欣, 卢园萍, 廖剑华, 陈美元. 双孢蘑菇野生种质资源营养成分分析与评价[J]. 生物技术通报, 2021, 37(11): 109-118. |
[7] | 王衍莉, 杨义明, 范书田, 赵滢, 许培磊, 路文鹏, 李昌禹. 基于SSR分子标记的73份山葡萄及杂交后代的遗传多样性分析[J]. 生物技术通报, 2021, 37(1): 189-197. |
[8] | 孙嘉栋, 孙晓凤, 李兰, 沈伟, 程顺峰. 干细胞技术在地方猪种质资源保护中的应用前景[J]. 生物技术通报, 2020, 36(8): 228-234. |
[9] | 石建斌, 周红, 王宁, 许庆华, 乔文青, 严根土. 棉花SSR标记种质资源纯度鉴定及遗传多样性分析[J]. 生物技术通报, 2018, 34(7): 138-146. |
[10] | 董颖, 胡红霞, 田照辉, 王巍, 东天. 鲟鱼外周血淋巴细胞的分离及最佳体外增殖性反应条件[J]. 生物技术通报, 2018, 34(3): 150-155. |
[11] | 李瑞雪,孙任洁,汪泰初,陈丹丹,李荣芳,李龙,赵卫国,. 植物抗旱性鉴定评价方法及抗旱机制研究进展[J]. 生物技术通报, 2017, 33(7): 40-48. |
[12] | 梁晓, 卢芙萍, 卢辉, 伍春玲, 曹宪红, 陈青. 保护酶PPO在木薯种质抗螨中的功能初步研究[J]. 生物技术通报, 2017, 33(4): 143-148. |
[13] | 东天,刘凤娇,胡红霞,朱华. 鲟鱼性别分化相关基因研究进展[J]. 生物技术通报, 2015, 31(10): 62-70. |
[14] | 董传举, 刘园园 ,刘晓勇3 ,宋迎楠, 徐鹏 ,孙效文. 四种鲟鱼线粒体 PCR-RFLP 鉴定方法的研究[J]. 生物技术通报, 2014, 0(12): 78-85. |
[15] | 高义平,董福双,王海波. 红小豆生物技术研究进展[J]. 生物技术通报, 2013, 0(3): 10-14. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||