生物技术通报 ›› 2015, Vol. 31 ›› Issue (1): 67-72.doi: 10.13560/j.cnki.biotech.bull.1985.2015.01.010
薛茗月1,2 覃英凤 李健 叶高杰 湛志华2
收稿日期:
2013-12-05
出版日期:
2015-01-09
发布日期:
2015-01-10
作者简介:
薛茗月,女,博士研究生,研究方向:电分析及生化分析;E-mail:xmy818@163.com
基金资助:
Xue Mingyue1,2, Qin Yingfeng, Li Jian, Ye Gaojie, Zhan Zhihua2
Received:
2013-12-05
Published:
2015-01-09
Online:
2015-01-10
摘要: 信号放大技术因其能实现低浓度分子检测,灵敏度高而在多个研究领域发展非常迅速。而适体作为识别分子已成功应用于多种生物传感器平台,在医疗诊断、环境检测、生化分析中显示出良好的应用前景。近年来,以适体为识别元件的生物传感器越来越受到人们的关注。综述了近3年来基于信号放大技术的适体生物传感器研究新发展。
薛茗月,覃英凤,李健,叶高杰,湛志华. 基于信号放大技术的适体生物传感器研究进展[J]. 生物技术通报, 2015, 31(1): 67-72.
Xue Mingyue, Qin Yingfeng, Li Jian, Ye Gaojie, Zhan Zhihua. Advance Based on Signal Amplification Technology with Aptamer Biosensor[J]. Biotechnology Bulletin, 2015, 31(1): 67-72.
[1] Yin BC, Liu YQ, Ye BC. One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification[J]. J Am Chem Soc, 2012, 134(11):5064- 5067. [2] Liu YQ, Zhang M, Yin BC, Ye BC. Attomolar ultrasensitive microRNA detection by DNA-scaff olded silver-nanocluster probe based on isothermal ampli fication[J]. Anal Chem, 2012, 84:5165-5169. [3] Zhao YX, Qi L, Chen F, et. al. Ultrasensitive and selective detection of-- nicotinamide adenine dinucleotide by target-triggered ligation-rolling circle amplification[J]. Chem Commun, 2012, 48:3354-3356. [4] Wen YQ, Xu Y, Mao X, et al. DNAzyme-based rolling-circle amplification DNA machine for ultrasensitive analysis of microRNA in Drosophila larva[J]. Anal Chem, 2012, 84:7664-7669. [5] Taton TA, Mueie RC, Mirkin CA, et al. The DNA-mediated formation of supramolecular mono-and multilayered nanoparticle structures[J] J Am Chem Soc, 2000, 122:6305-6306. [6] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers[J]. Biosensors and Bioelectronics, 2005, 20:2424-2434. [7] De-los-Santos-Alvarez N, Lobo-Castan MJ, Miranda-Oridieres AJ, et al. Aptamers as recognition elements for label-free analytical devices[J]. Trends in Analytical Chemistry, 2008, 27:437-446. [8] Shen L, Chen Z, Li Y, et al. A chronocoulometric aptamer sensor for adenosine monophosp-hate[J]. Chemical Communications, 2007, 21:2169-2171. [9] Zhang SS, Xia JP, Li XM. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles[J]. Analytical Chemistry, 2008, 80(22):8382-8388. [10] Tang SR, Tong P, Li H, et al. Ultrasensitive electrochemical detection of Pb2+ based on rolling circle amplication and quantum dots tagging[J]. Biosensors and Bioelectronics, 2013, 42:608-611. [11] Yang XH, Zhu JQ, Wang Q, et al. A label-free and sensitive super-sandwich electrochemical biosensor for small molecule detection based on target-induced aptamer displacement[J]. Anal Methods, 2012, 4:2221. [12] Zhu Y, Chandra P, Shim YB. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine Au nanoparticle aptamer bioconjugate[J]. Anal Chem, 2013, 85:1058-1064. [13] Chen JH, Zhang J, Guo Y, et al. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme[J]. Chem Commun, 2011, 47:8004-8006. [14] Bai LJ, Yuan R, Chai YQ, et al. Direct electrochemistry and electrocatalysis of aglucose oxidase-functionalized bioconjugate as a trace label for ultrasensitive detection of thrombin[J]. Chem Commun, 2012, 48:10972-10974. [15] Liu XR, Li Y, Zheng JB, et al. Carbon nanotube-enhanced electrochemical aptasensor for the detection of thrombin[J]. Talanta, 2010, 81:1619-1624. [16] Jiang LP, Yuan R, Chai YQ, et al. Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene[J]. Analyst, 2012, 137:2415. [17] Pavlov V, Xiao Y, Shlyahovsky B, et al. Aptamer-functionalized Au nanoparticles for the amplified optical detection of thrombin[J]. Journal of the American Chemical Society, 2004, 126(38):11768-11769. [18] Duzgun A, Maroto A, Mairal T, et al. Solid-contact potentiometric aptasensor based on aptamer functionalized carbon nanotubes for the direct determination of proteins[J]. Analyst, 2010, 135:1037-1041. [19] Jiang LP, Yuan R, Chai YQ, et al. An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods[J]. Analyst, 2013, 138:1497-1503. [20] Dong XY, Mi XN, Zhao WW, et al. CdS nanoparticles functionalized colloidal carbon particles:preparation, characterization and application for electrochemical detection of thrombin[J]. Biosens Bioelectron, 2011, 26:3654-3659. [21] Zhao WA, Chiuman W, Brook MA, et al. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation[J]. Chem Bio Chem, 2007, 8:727-731. [22] Xie XJ, Xu W, Liu XG. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification[J]. Accounts of Chenmical Research, 2011, 45(9):1511-1520. [23] Cui L, Ke GL, Zhang WY, et al. A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification[J]. Biosens Bioelectron, 2011, 26:2796-2800. [24] Tang LH, Liu Y, Ali MM, et al. Colorimetric and ultrasensitive bioassay based on a dual-amplication system using aptamer and DNAzyme[J]. Anal Chem, 2012, 84:4711- 4717. [25] Waldeisen JR, Wang T, Ross BM, et al. Disassembly of a core satellite nanoassembled substrate for colorimetric biomolecular detection[J]. ACS Nano, 2011, 5(7):5383-5389. [26] Wang Y, Yang F, Yang XR. Colorimetric biosensing of mercury(II)ion using unmodified gold nanoparticle probes and thrombin-binding aptamer[J]. Biosensors Bioelectronics, 2010, 25:1994-1998. [27] Mazumdar D, Liu JW, Lu G, et al. Easy-to-use dipstick tests for detection of lead in paints using n--on-cross-linked gold nanoparticle-DNAzyme conjugates[J]. Chem Commun, 2010, 46:1416-1418. [28] Lin CY, Yu CJ, Lin YH, et al. Colorimetric sensing of silver(I)and mercury(II)ions based on an assembly of- tween 20-stabilized gold nanoparticles[J]. Anal Chem, 2010, 82:6830-6837. [29] Lin YH, Chen CE, Wang CY, et al. Silver nanoprobe for -sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction[J]. Chem Commun, 2011, 47:1181-1183. [30] Liu DB, Wang Z, Jiang XY. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules[J]. Nanoscale, 2011, 3:1421-1433. [31] Katiyar N, Selvakumar LS, Patra S, et al. Gold nanoparticles based colorimetric aptasensor for theophylline[J]. Anal Methods, 2013, 5:653-659. [32] Fu RZ, Li TH, Lee SS, et al. DNAzym-e molecular beacon probes for target-induced signal-amplifying colorimetric detection of nucleic acids[J]. Anal Chem, 2011, 83:494-500. [33] Li J, Fu HE, Wu LJ, et al. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe[J]. Anal Chem, 2012, 84:5309-5315. [34] Jian JW, Huang CC. Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles[J]. Chem Eur J, 2011, 17:2374-2380. [35] Yang C, Wang Y, Marty JL, Yang XR. Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator[J]. Biosens Bioelectron, 2011, 26:2724-2727. [36] Wu YG, Zhan SS, Wang FZ, et al. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(III)in aqueous solution[J]. Chem Commun, 2012, 48:4459-4461. [37] Mancuso M, Jiang L, Cesarman E, Erickson D. Multiplexed colorimetric detection of Kaposi’s sarcoma associated herpesvirus and Bartonella DNA using gold and silver nanoparticles[J]. Nanoscale, 2013, 5:1678-1686. [38] Liu XQ, Freeman R, Golub E, Willner I. Chemiluminescence and chemiluminescence resonance energy transfer(CRET)aptamer sensors using catalytic hemin/G-quadruplexes[J]. ACS Nano, 2011, 5(9):7648-7655. [39] Lee JS, Joung HA, Kim MG, Park CB. Graphene-based chemiluminescence resonance energy transfer for homogeneous immunoassay[J]. ACS Nano, 2012, 6(4):2978-2983. [40] Chen H, Li RB, Li HF, et al. Plasmon-assisted enhancement of the ultraweak chemiluminescence using Cu/Ni metal nanoparticles[J]. J Phys Chem C, 2012, 116:14796-14803. [41] Huang Y, Zhao SL, Liu YM, et al. An amplified single-walled carbon nanotube-mediated chemiluminescence turn-on sensing platform for ultrasensitive DNA detection[J]. Chem Commun, 2012, 48:9400-9402. [42] Freeman R, Liu XQ, Willner I. Chemiluminescent and chemilumi-nescence resonance energy transfer(CRET)detection of DNA, metal ions, and aptamer substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots[J]. J Am Chem Soc, 2011, 133:11597-11604. [43] Huang Y, Zhao SL, Chen ZF, et al. An amplified chemiluminescence aptasensor based on bi-resonance energy transfer on gold nanopar-ticles and exonuclease III-catalyzed target recycling[J]. Chem Commun, 2012, 48:11877-11879. [44] Luo M, Chen X, Zhou GH, et al. Chemiluminescence biosensors for DNA detection using graphene oxide and a horseradish peroxidase-mimicking DNAzyme[J]. Chem Commun, 2012, 48:1126-1128. [45] Qin GX, Zhao SL, Huang Y, et al. Magnetic bead-sensing-platform-based chemiluminescence resonance energy transfer and its immunoassay application[J]. Anal Chem, 2012, 84:2708 -2712. [46] Li T, Wang EK, Dong SJ. Lead(II)-induced allosteric G-quadr-uplex DNA zyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection[J]. Anal Chem, 2010, 82:1515-1520. [47] Chen H, Li HF, Lin JM. Determination of ammonia in water based on chemiluminescence resonance energy transfer between peroxymonocarbonate and branched NaYF4:Yb3+/Er3+ nanoparticles[J]. Anal Chem, 2012, 84:8871-8879. [48] Yu JH, Ge L, Huang JD, et al. Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid[J]. Lab Chip, 2011, 11:1286-1291. [49] Bi S, Zhang JL, Hao SY, et al. Exponential amplification for chemiluminescence resonance energy transfer detection of microrna in real samples based on a cross-catalyst strand-displacement network[J]. Anal Chem, 2011, 83:3696-3702. [50] Freeman R, Girsh J, Jou AF, et al. Optical aptasensors for the analysis of the vascular endothelial growth factor(VEGF)[J]. Anal Chem, 2012, 84:6192-6198. [51] Feng KJ, Kong RM, Wang H, et al. A universal amplified strategy for aptasensors:enhancing sensitivity through allostery-triggered enzymatic recycling amplification[J]. Biosensors and Bioelectronics, 2012, 38:121-125. [52] Xue LY, Zhou XM, Xing D. Sensitive and homogeneous protein detection based on target-triggered aptamer hairpin switch and nicking enzyme assisted fluorescence signal amplification[J]. Anal Chem, 2012, 84:3507-3513. [53] Zheng AX, Wang JR, Li J, et al. Nicking enzyme based homogene-ous aptasensors for amplification detection of protein[J]. Chem Commun, 2012, 48:374-376. [54] He Y, Lin Y, Tang HW, Pang DW. A graphene oxide-based fluore-scent aptasensor for the turn-on detection of epithelial tumor marker mucin[J]. Nanoscale, 2012, 4:2054-2059. [55] Zhao XH, Ma QJ, Wu XX, Zhu X. Graphene oxide-based biosensor for sensitive fluorescence detection of DNA based on exonuclease III-aided signal amplification[J]. Analytica Chimica Acta, 2012, 727:67-70. [56] Xu LG, Zhu YY, Ma W, et al. Sensitive and specific DNA detection based on nicking endonuclease-assisted fluorescence resonance energy transfer amplification[J]. J Phys Chem C, 2011, 115:16315-16321. [57] Zhao YX, Qi L, Yang WJ, et al. Amplified fluorescence detection of Pb2+ using Pb2+- dependent DNAzyme combined with nicking enzyme-mediated enzymatic recycling amplification[J]. Chin J Anal Chem, 2012, 40(8):1236-1240. [58] Sarkar S, Bose R, Jana S, et al. Doped semiconductor nanocrystals and organic dyes:an efficient and greener FRET system[J]. J Phys Chem Lett, 2010, 1:636-640. [59] Tu YQ, Li W, Wu P, et al. Fluorescence quenching of graphene oxide integrating with the site-specific cleavage of the endonuclease for sensitive and selective microRNA detection[J]. Anal Chem, 2013, 85:2536-2542. [60] Shi Y, Huang WT, Luo HQ et al. A label-free DNA reduced graphene oxide-based fluorescent sensor for highly sensitive and selective detection of hemin[J]. Chem Commun, 2011, 47:4676-4678. [61] He JL, Wu ZS, Zhou H, et al. Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal Chem, 2010, 82:358-1364. [62] Ma CP, Wang WS, Yang Q, et al. Cocaine detection via rolling circle amplification of short DNA strand separated by magnetic beads[J]. Biosensors and Bioelectronics, 2011, 26:3309-3312. [63] Zhang YW, Sun XP. A novel fluorescent aptasensor for thrombin detection:using poly(m-phenylenediamine)rods as an effective sensing platform[J]. Chem Commun, 2011, 47:3927-3929. [64] Zhu SY, Han S, Zhang L, et al. A novel fluorescent aptasensor based on single-walled carbon nanohorns[J]. Nanoscale, 2011, 3:4589-4592. |
[1] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[2] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[3] | 王鹏飞, 杨敏, 朱龙佼, 许文涛. 基于铂纳米团簇的生物传感研究进展[J]. 生物技术通报, 2021, 37(12): 235-242. |
[4] | 赵颖, 王楠, 陆安祥, 冯晓元, 郭晓军, 栾云霞. 核酸适配体侧流层析分析技术在真菌毒素检测中的应用[J]. 生物技术通报, 2020, 36(8): 217-227. |
[5] | 方顺燕, 宋丹, 刘艳萍, 徐文娟, 刘佳瑶, 韩向峙, 龙峰. 用于Escherichia coli O157∶H7直接快速检测的倏逝波荧光核酸适配体传感器研究[J]. 生物技术通报, 2020, 36(7): 228-234. |
[6] | 叶健文, 陈江楠, 张旭, 吴赴清, 陈国强. 动态调控:一种高效的细胞工厂工程化代谢改造策略[J]. 生物技术通报, 2020, 36(6): 1-12. |
[7] | 杨敏, 李舒婷, 杨文平, 李相阳, 许文涛. DNA/银纳米簇介导的功能核酸生物传感器研究进展[J]. 生物技术通报, 2020, 36(6): 245-254. |
[8] | 柳苏月, 田晶晶, 田洪涛, 许文涛. 铽(III)离子及其复合物:从发光特性到传感应用[J]. 生物技术通报, 2020, 36(4): 192-207. |
[9] | 孙雨阁, 李宸葳, 杜再慧, 许文涛. FEN1酶介导的功能核酸生物传感器的研究进展[J]. 生物技术通报, 2020, 36(4): 208-224. |
[10] | 吴亚, 徐智辉, 张彪, 赵冬芳, 曹文欣, 张兴平. 核酸适配体光学生物传感器在卡那霉素检测中的研究进展[J]. 生物技术通报, 2020, 36(1): 193-201. |
[11] | 肖冰, 罗云波, 黄昆仑, 张园, 许文涛. 功能核酸荧光标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(7): 213-221. |
[12] | 谢银侠, 王蔚然, 程楠, 许文涛. 电信号分子在电化学功能核酸生物传感器中的研究进展[J]. 生物技术通报, 2019, 35(5): 157-169. |
[13] | 肖冰, 刘榜, 罗云波, 黄昆仑, 张园, 李夏莹, 张秀杰, 许文涛, 周翔. 功能核酸荧光免标记型定量统一化检测技术的研究进展[J]. 生物技术通报, 2019, 35(3): 194-202. |
[14] | 李宸葳, 杜再慧, 林少华, 罗云波, 许文涛. Pb2+功能核酸生物传感器的研究进展[J]. 生物技术通报, 2019, 35(1): 131-139. |
[15] | 李凯, 罗云波, 许文涛. 10-23脱氧核酶介导的生物传感器研究进展[J]. 生物技术通报, 2019, 35(1): 140-150. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 320
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||