[1] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. The Plant Cell, 1995, 7(2):173-182. [2] Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2):411-432. [3] Shigyo M, Ito M. Analysis of gymnosperm two-AP2-domain-containing genes[J]. Dev Genes Evol, 2004, 214(3):105-114. [4] Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor(ERF domain)in plant[J]. Journal of Biological Chemistry, 1998, 273(41):26857-26861. [5] Rashid M, He G, Yong G, et al. AP2/ERF transcription factor in rice:genome-wide canvas and syntenic relationships between monocots and eudicots[J]. Evol Bioinform, 2012, 8:321. [6] Abogadallah GM, Nada RM, Malinowski R, et al. Overexpression of HARDY, an AP2/ERF gene from Arabidopsis, improves drought and salt tolerance by reducing transpiration and sodium uptake in transgenic Trifolium alexandrinum L. [J]. Planta, 2011, 233(6):1265-1276. [7] Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana[J]. Science, 2003, 301(5633):653-657. [8] Hu YX, Wang YH, Liu XF, et al. Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development[J]. Cell Research, 2004, 14(1):8-15. [9] Wan L, Zhang J, Zhang H, et al. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice[J]. Plos One, 2011, 6(9):e25216. [10] Mao D, Chen C. Colinearity and similar expression pattern of rice DREB1s reveal their functional conservation in the cold-responsive pathway[J]. Plos One, 2012, 7(10):e47275. [11] Wang Q, Guan Y, Wu Y, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice[J]. Plant Mol Biol, 2008, 67(6):589-602. [12] Schmidt R, Mieulet D, Hubberten HM, et al. SALT-RESPONSIVE ERF1 regulates reactive oxygen species-dependent signaling during the initial response to salt stress in rice[J]. The Plant Cell, 2013, 25(6):2115-2131. [13] Zhang L, Li Z, Quan R, et al. An AP2 domain-containing gene, ESE1, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis[J]. Plant Physiology, 2011, 157(2):854-865. [14] Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. The Plant Cell, 1996, 8(2):155-168. [15] Gao F, Chen JM, Xiong AS, et al. Isolation and characterization of a novel AP2/EREBP-type transcription factor OsAP211 in Oryza sativa[J]. Biologia Plantarum, 2009, 53(4):643-649. [16] Hu Y, Zhao L, Chong K, et al. Overexpression of OsERF1, a novel rice ERF gene, up-regulates ethylene-responsive genes expression besides affects growth and development in Arabidopsis[J]. Journal of Plant Physiology, 2008, 165(16):1717-1725. [17] Jofuku KD, Den Boer BG, Van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell, 1994, 6(9):1211-1225. [18] Chung MY, Vrebalov J, Alba R, et al. A tomato(Solanum lycopersicum)APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening[J]. Plant J, 2010, 64(6):936-947. [19] Lee DY, Lee J, Moon S, et al. The rice heterochronic gene SUPERNUMERARY BRACT regulates the transition from spikelet meristem to floral meristem[J]. Plant J, 2007, 49(1):64-78. [20] Zhou Y, Lu D, Li C, et al. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1[J]. The Plant Cell, 2012, 24(3):1034-1048. [21] Fu FF, Xue HW. Coexpression analysis identifies Rice Starch Regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiology, 2010, 154(2):927-938. [22] Kim TH, Kim MC, Park JH, et al. Differential expression of rice lipid transfer protein gene(LTP)classes in response to abscisic acid, salt, salicylic acid, and the fungal pathogen Magnaporthe grisea[J]. Journal of Plant Biology, 2006, 49(5):371-375. [23] Guo ZJ, Chen XJ, Wu XL, et al. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tol-erance in tobacco[J]. Plant Mol Biol, 2004, 55(4):607-618. [24] Serra TS, Figueiredo DD, Cordeiro AM, et al. OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors[J]. Plant Molecular Biology, 2013, 82(4-5):439-455. [25] Lee DY, An G. Two AP2 family genes, supernumerary bract(SNB)and Osindeterminate spikelet 1(OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice[J]. The Plant Journal, 2012, 69(3):445-461. [26] Zhu QH, Upadhyaya NM, Gubler F, et al. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice(Oryza sativa)[J]. BMC Plant Biology, 2009, 9(1):149. [27] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J]. Annu Rev Plant Biol, 2006, 57:781-803. [28] Pieterse CMJ, Leon-Reyes A, Van der Ent S, et al. Networking by small-molecule hormones in plant immunity[J]. Nature Chemical Biology, 2009, 5(5):308-316. [29] Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signaling[J]. Biologia Plantarum, 2010, 54(2):201-212. [30] Liu D, Chen X, Liu J, et al. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance[J]. J Exp Bot, 2012, 63(10):3899-3911. [31] Mallikarjuna G, Mallikarjuna K, Reddy MK, et al. Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice(Oryza sativa L. )[J]. Biotechnology Letters, 2011, 33(8):1689-1697. [32] Zhang G, Chen M, Li L, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot, 2009:erp214. [33] Würschum T, Groβ-Hardt R, Laux T. APETALA2 regulates the stem cell niche in the Arabidopsis shoot meristem[J]. The Plant Cell, 2006, 18(2):295-307. [34] Chen X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025. [35] Lauter N, Kampani A, Carlson S, et al. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(26):9412-9417. [36] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2(bHLH)and AtMYB2(MYB)function as transcriptional activators in abscisic acid signaling[J]. The Plant Cell, 2003, 15(1):63-78. |