生物技术通报 ›› 2015, Vol. 31 ›› Issue (4): 105-119.doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.005
姜楠1,潘学峰1,2
收稿日期:
2015-02-02
出版日期:
2015-04-22
发布日期:
2015-04-22
作者简介:
姜楠,硕士研究生,研究方向:分子生物学;E-mail:nanjiang_10@126.com
基金资助:
Jiang Nan1 Pan Xuefeng 1,2
Received:
2015-02-02
Published:
2015-04-22
Online:
2015-04-22
摘要: 表观遗传学和基于表观遗传机制的生物医药技术的研究已经成为后基因组时代生命科学技术领域的重要组成部分。围绕肿瘤、心脑血管疾病、糖尿病及中老年神经退行性疾病等过程中DNA甲基化修饰、组蛋白翻译后修饰及非编码RNA等表观遗传学改变的深入研究,不仅有利于理解相关疾病的分子病理机制,而且,更有助于探寻基于表观遗传机制的有效治疗手段。在阐释表观遗传学修饰机制的基础上,对疾病过程中异常的表观遗传学修饰及相关生物医药技术的研究现状进行了归纳总结。
姜楠,潘学峰. 表观遗传学及现代表观遗传生物医药技术的发展[J]. 生物技术通报, 2015, 31(4): 105-119.
Jiang Nan, Pan Xuefeng. The Developments of Epigenetics and Epigenetics-based Modern Biomedicine and Pharmaceutics[J]. Biotechnology Bulletin, 2015, 31(4): 105-119.
[1]潘学峰. 基因疾病的分子生物学[M]. 北京:化学工业出版社, 2014:1-450. [2]Barlow DP, Bartolomei MS. Genomic imprinting in mammals[M]. Cold Spring Harb Perspect Biol, 2014, 6:a018382. [3]Kriaucionis S, Tahiliani M. Expanding the epigenetic landscape:novel modifications of cytosine in genomic DNA[M]. Cold Spring Harb Perspect Biol, 2014, 6:a018630. [4]Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet, 2007, 39:61-69. [5]Feng S, Cokus SJ, Zhang X, et al. Conservation and divergence of methylation patterning in plants and animals[J]. Proc Natl Acad Sci, 2010, 107:8689-8694. [6]Mar BG, Bullinger L, Basu E, et al. Sequencing histone-modifying enzymes identifies UTX mutations in acute lymphoblastic leukemia[J]. Leukemia, 2012, 26:1881-1883. [7]Mercer TR, Dinger ME, Mattick JS. Longnon-coding RNAs:insights into functions[J]. Nat Rev Genet, 2009, 10:155-159. [8]Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs[J]. Cell, 2009, 136:629-641. [9]Kaikkonen MU, Lam MT, Glass CK. Non-coding RNAs as regulators of gene expression and epigenetics[J]. Cardiovasc Res, 2011, 90:430-440. [10]Melnyk CW, Molnar A, Bassett A, Baulcombe DC. Mobile 24 nt small RNAs direct transcriptional gene silencing in the root meristems of Arabidopsis thaliana[J]. Curr Biol, 2011, 21:1678-1683. [11]Brockdorff N, Turner BM. Dosage compensation in mammals[M]. Cold Spring Harb Perspect Biol, 2014:a019406. [12]Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine[J]. Science, 2008, 319:1787-1789. [13]Chioda M, Becker PB. Soft skills turned into hard facts:nucleosome remodelling at developmental switches[J]. Heredity, 2010, 105:71-79. [14]Vicent GP, Nacht AS, Zaurin R, et al. Minireview:role of kinases and chromatin remodeling in progesterone signaling to chromatin[J]. Mol Endocrinol, 2010, 24:2088-2098. [15]Morettini S, Podhraski V, Lusser A. ATP-dependent chromatin remodeling enzymes and their various roles in cell cycle control[J]. Front Biosci, 2008, 13:5522-5532. [16]Hargreaves DC, Crabtree GR. ATP-dependent chromatin remodeling:genetics, genomics and mechanisms[J]. Cell Res, 2011, 21:396-420. [17]Baulcombe DC, Dean C. Epigenetic regulation in plant responses to the environment[M]. Cold Spring Harb Perspect Biol, 2014, 6:a019471. [18]To TK, Nakaminami K, Kim JM, et al. Arabidopsis HDA6 is required for freezing tolerance[J]. Biochem Biophys Res Commun, 2011, 406:414-419. [19]Borsani O, Zhu J, Verslues PE, et al. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis[J]. Cell, 2005, 123:1279-1291. [20]Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress[J]. J Biol Chem, 2002, 277:37741-37746. [21]Aina R, Sgorbati S, Santagostino A, et al. Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp[J]. Physiol Plant, 2004, 121:472-480. [22]Gutierrez-Marcos JF, Dickinson HG. Epigenetic reprogramming in plant reproductive lineages[J]. Plant Cell Physiol, 2012, 53:817-823. [23] Iwasaki M, Paszkowski J. Identification of genes preventing transgenerational transmission of stress-induced epigenetic states[J]. Proc Natl Acad Sci USA, 2014, 111:8547-8552. [24] Oh ET, Park MT, Choi BH, et al. Novel histone deacetylase inhibitor CG200745 induces clonogenic cell death by modulating acetylation of p53 in cancer cells[J]. Investigational New Drugs, 2010, 30(2):435-442. [25] Busslinger M, Tarakhovsky A. Epigenetic control of immunity[M]. Cold Spring Harb Perspect Biol, 2014, 6:a019307. [26] Weber C, Noels H. Atherosclerosis:current pathogenesis and therapeutic options[J]. Nat Med, 2011, 17:1410-1422. [27] Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145:341-355. [28]Sharma P, Kumar J, Garg G, et al. Detection of altered global DNA methylation in coronary artery disease patients[J]. DNA Cell Biol, 2008, 27:357-365. [29]Castro R, Rivera I, Blom HJ, et al. Homocysteine metabolism, hyperhomocysteine mia and vascular disease:an overview[J]. J Inherit Metab Dis, 2006, 29:3-20. [30] Libby P, Okamoto Y, Rocha VZ, Folco E. Inflammation in atherosclerosis:transition from theory to practice[J]. Circ J, 2010, 74:213-220. [31] Jia L, Zhu L, Wang JZ, et al. Methylation of FOXP3 in regulatory T cells is related to the severity of coronaryartery disease[J]. Atherosclerosis, 2013, 228:346-352. [32] Zaina S, Heyn H, Carmona FJ, et al. A DNA methylation map of human Atherosclerosis[J]. Circ Cardiovasc Genet, 2014, 7(5):692-700. [33] Mikaela MB, Ross TM, Anthony WR. Epigenetic modulation in the treatment of atherosclerotic disease[J]. Fronries in Genetics, 2014, 364:1-7. [34]Myzak MC, Tong P, Dashwood WM, et al. Sulf oraphanere tards the growth of human PC-3xenografts and inhibits HDAC activity in human subjects[J]. Exp Biol Med(Maywood), 2007, 232:227-234. [35]Elbarbry F, Elrody N. Potential health benefits of sulforaphane:a review of the experimental, clinical, and epidemiological evidences and underlying mechanisms[J]. J Med Plants Res, 2011, 5:473-484. [36]Bai Y, Cui W, Xin Y, et al. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up-regulaton of Nrf2 expression and transcription activation[J]. J Mol Cell Cardiol, 2013, 57:82-95. [37]Zhang C, Su ZY, Khor TO, et al. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMPC1 cells through epigenetic regulation[J]. Biochem Pharmacol, 2013, 85:1398-1404. [38]Coban D, Milenkovic D, Chanet A, et al. Dietary curcumin inhibits atherosclerosis by affecting the expression of genes involved in leukocyte adhesion and transendothelial migration[J]. Mol Nutr Food Res, 2012, 56, 1270-1281. [39]Moon CY, Ku CR, Cho YH, et al. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis[J]. Biochem Biophys Res Commun, 2012, 423:116-121. [40]Dean L, McEntyre J. The Genetic Landscape of diabetes[M]. Bethesda(MD):National Center for Biotechnology Information 9US0, 2004:1-135. [41]Aathira R, Jain V. Advances in management of type 1 diabetes mellitus[J]. World J Diabetes, 2014, 5(5):689-696. [42]Singh AK, Sinha B. Advances in basal insulin therapy:lessons from current evidence[J]. J Indian Med Assoc, 2013, 111(11):735-736, 738-742. [43]Fu W, Farache J, Clardy SM, et al. Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and β cells[J]. ELife, 2014, 3:e04631. [44] Huang B, Yang XD, Zhou MM, et al. Brd4 coactivates transcriptio-nal activation of NF-kappaB via specific binding to acetylated RelA [J]. Molecular and Cellular Biology, 2009, 29:1375-1387. [45]Zhang G, Liu R, Zhong Y, et al. Down-regulation of NF-kappaB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition[J]. Journal of Biological Chemistry, 2012, 287:28840-28851. [46]Zou Z, Huang B, Wu X, et al. Brd4 maintains constitutively active NF-kappaB in cancer cells by binding to acetylated RelA[J]. Oncogene, 2014, 33:2395-2404. [47]Zeng L, Zhou MM. Bromodomain:An acetyl-lysine binding domain[J]. FEBS Lett, 2002, 513:124-128. [48]Brietake SA. Oral antihyperglycemic treatment options for type 2 diabetes mellitus[J]. Med Clin North Am, 2015, 99(1):87-106. [49]Wallace TM, Matthews DR. Coefficient of failure:a methodology for examining longitudinal beta-cell function in type 2 diabetes[J]. Diabet Med, 2002, 19:465-469. [50]Robertson RP, Harmon J, Tran PO, et al. Glucose toxicity in betacells:type 2 diabetes, good radicals gone bad, and the glutathione connection[J]. Diabetes, 2003, 52:581-587. [51]Coppedè F. Advances in the genetics and epigenetics of neurodegenerative diseases[J]. Epigenetics Neurodegener Dis, 2014, 1:3-31. [52]Mirkin SM. Expandable DNA repeats and human disease[J]. Nature, 2007, 447:932-940. [53]Kovtun IV, McMurray CT. Features of trinucleotide repeat instability in vivo[J]. Cell Res, 2008, 18:198-213. [54]Overk CR, Masliah E. Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease[J]. Biochem Pharmacol, 2014, 88:508-516. [55]Coppedè F. Advances in the genetics and epigenetics of neurodegenerative diseases[J]. Epigenetics Neurodegener Dis, 2014, 1:3-31. [56]Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in Alzheimer’s disease:decrements in DNA methylation[J]. Neurobiol. Aging, 2010, 31:2025-2037. [57]Chouliaras L, Mastroeni D, Delvaux E, et al. Consistent decrease in global DNA methylation and hydroxy methylation in the hippocampus of Alzheimer’s disease patients[J]. Neurobiol Aging, 2013, 34:2091-2099. [58] Zhang K, Schrag M, Crofton A, et al. Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease[J]. Proteomics, 2012, 12:1261-1268. [59]Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated proteintau[J]. J Neurochem, 2008, 106:2119-2130. [60]Gr?ff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain[J]. Nature, 2010, 483:222-226. [61]Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease[J]. Pathobiol Aging Age Relat, 2012, 2:1-12. [62]Coppedè F. One-carbon metabolism and Alzheimer’s disease:focuson epigenetics[J]. Curr Genomics, 2010, 11:246-260. [63]Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease[J]. Neuropsychopharmacology, 2010, 35:870-880. [64] Francis YI, Fà M, Ashraf H, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease[J]. J Alzheimers Dis, 2009, 18:131-139. [65] Fischer A, Sananbenesi F, Wang X, et al. Recovery of learning and memory after neuronal loss is associated with chromatin remodeling[J]. Nature, 2007, 447:178-182. [66] Zhang Z, Schluesener YHJ. Oralad ministration of histone deacetylase inhibitor MS-275 ameliorates neuro inflammation and cerebralamy loidosis and improves behavior in a mouse model[J]. J Neuropathol Exp Neurol, 2013, 72:178-185. [67] Sung YM, Lee T, Yoon H, et al. Mercaptoacetamide-based classII HDAC inhibitor owers Aβ levels and improves learning and memory in a mouse model of Alzheimer’s disease[J]. Exp Neurol, 2013, 239:192-201. [68] Govindarajan N, Agis-Balboa RC, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administer edatan advanced stage of disease progression[J]. J Alzheimers Dis, 2011, 26:187-197. [69] Ricobaraza A, Cuadrado-Tejedor M, Marco S, et al. Phenylbutyrat-erescues dendritic spine loss associated with memory deficits in amouse model of Alzheimer disease[J]. Hippocampus, 2010, 22:1040-1050. [70] Mak MK, Cole JH. Movement dysfunction in patients with Parkins-on’s disease:a literature review[J]. Aust J Physiother, 1991, 37 (1):7-17. [71] Devos D, Lejeune S, Cormier-Dequaire F, et al. Dopa-decarboxylase gene polymorphisms affect the motor response to L-dopa in Parkinson's disease[J]. Parkinsonism Relat Disord, 2014, 20(2):170-175. [72]Thomas B, Beal MF. Molecular insights into Parkinson’s disease[J]. F1000 Med Rep, 2011, 3:7. [73]Coppedè F. Genetics and epigenetics of Parkinson’s disease[J]. Scientific World Journal, 2012, 2010:1-12. [74]Jowaed A, Schmitt I, Kaut O, Wüllner U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’brains[J]. J Neurosci, 2010, 30:6355-6359. [75]Matsumoto L, Takuma H, Tamaoka A, et al. CpG demethylation enhances alpha synuclein expression and affects the pathogenesis of Parkinson’s disease[J]. PLoS One, 2010, 5:e15522. [76]Desplats P, Spencer B, Coffee E, et al. Alpha-synuclein sequesters Dnmt1 from the nucleus:anovel mechanism for epigenetic alterations in Lewy body diseases[J]. J Biol Chem, 2011, 286:9031-9037. [77]Monti B, Gatta V, Piretti F, et al. Valproic acid is neuroprotective in the rotenonerat model of Parkinson’s disease:involvement of α-synuclein[J]. Neurotox Res, 2010, 17:130-141. [78]Zhou W, Bercury K, Cummiskey J, et al. Phenylbutyrateup-regulates the DJ-1protein and protects neurons in cell culture and in animal models of Parkinson’s disease[J]. J Biol Chem, 2011, 286:14941-14951. [79]Rane P, Shields J, Heffernan M, et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motorstage PD[J]. Neuropharmacology, 2012, 62:2409-2412. [80]St Laurent R, O’Brien LM, Ahmad ST. Sodium butyrate improves locomotor impairment and early mortality in arotenone-induced Drosophila model of Parkinson’s disease[J]. Neuroscience, 2013, 246:382-390. [81]Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity[J]. Hum Mol Genet, 2006, 15:3012-3023. [82]Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue alpha-synuclein mediated toxicity in models of Parkinson’s disease[J]. Science, 2007, 317:516-519. [83]Goers J, Manning-Bog AB, McCormack AL, et al. Nuclear localization of alpha-synuclein and its interaction with histones[J]. Biochemistry, 2003, 42:8465-8471. [84]Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase:therapeutic potential in Parkinson’s disease?[J]. Pharmacol Ther, 2013, 140:34-52. [85]Pan XF. Mechanism of trinucleotide repeats instabilities:the necessities of repeat non-B secondary structure for-mation and the roles of cellular trans-acting factors[J]. Acta Genet Sin, 2006, 33(1):1-11. [86]丁云峰, 潘学峰. 三核苷酸重复序列(GAA?Trc)n扩增的分子机制研究现状[J]. 国际遗传学杂志, 2009, 32(6):412-415. [87]Pan XF, Ding YF, Shi LF. The roles of SbcCD and RNaseE in the transcription of GAA?TTC repeats in Escherichia coli[J]. DNA Repair(Amst), 2009, 8(11):1321-1327. [88]Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase:therapeutic potential in Parkinson’s disease?[J]Pharmacol Ther, 2013, 140:34-52. [89]Karagiannis TC, Ververis K. Potential of chromatin modifying compounds for the treatment of Alzheimer’s disease[J]. Pathobiol Aging Age Relat, 2012, 2:1-22. [90]Campuzano V, Montermini L, Molto MD, et al. Friedreich’s ataxia:autosomal recessive disease caused by an intronic GAA triplet repeat expansion[J]. Science, 1996, 271:1423-1427. [91]Pandolfo M. Friedreich ataxia[J]. Arch Neurol, 2008, 65:1296-1303. [92]Campuzano V, Montermini L, Lutz Y, et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes[J]. Hum Mol Genet, 1997, 6:1771-1780. [93]Sandi C, Sandi M, Anjomani Virmouni S, et al. Epigenetic-based therapies for Friedreich’s ataxia[J]. Frontiers in Genetics, 2014, 5(165):1-12. [94]Jain N, Rossi A, Garcia-Manero G. Epigenetic therapy of leukemia:an update[J]. Int J Biochem Cell Biol, 2009, 41:72-80. [95]Butler R, Bates GP. Histone deacetylase inhibitors as therapeutics for polyglutamine disorders[J]. Nat Rev Neurosci, 2006, 7:784-796. [96]Herman D, Jenssen K, Burnett R, et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia[J]. Nat Chem Biol, 2006, 2:551-558. [97]Soragni E, Xu C, Plastere HL, et al. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia[J]. J Child Neurol, 2012, 27:1164-1173. [98]Watts JK, Yu D, Charisse K, et al. Effect of chemical modifications on modulation of gene expression by duplex antigene RNAs that are complementary to non-coding transcripts at gene promoters[J]. Nucleic Acids Res, 2010, 38:5242-5259. [99] Gallagher A, Hallahan B. Fragile X-associated disorders:a clinical overview[J]. J Neurol, 2010, 259:401-413. [100] Loomis EW, Eid JS, Peluso P, et al. Sequencing the unsequence-able:expanded CGG-repeat alleles of the fragile X gene[J]. Genome Res, 2013, 23:121-128. [101] Coffee B, Keith K, Albizua I, et al. Incidence of fragile X syndrome by newborn screening for methylated FMR1 DNA[J]. Am J Hum Genet, 2009, 85:503-514. [102] Oberle I, Rousseau F, Heitz D, et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome[J]. Science, 1991, 252:1097-1102. [103] Pieretti M, Zhang FP, Fu YH, et al. Absence of expression of the FMR-1 gene in fragile X syndrome[J]. Cell, 191, 66:817-822. [104] Luo S, Robinson JC, Reiss AL, et al. DNA methylation of the fragile X locus in somatic and germ cells during fetal development:relevance to the fragile X syndrome and X inactivation[J]. Somat Cell Mol Genet, 1993, 19:393-404. [105] Hansen RS, Gartler SM, Scott CR, et al. Methylation analysis of CGG sites in the CpG island of the human FMR1 gene[J]. Hum Mol Genet, 1992, 1:571-578. [106] Godler DE, Tassone F, Loesch DZ, et al. Methylation of novel markers of fragile X alleles is inversely correlated with FMRP expression and FMR1 activation ratio[J]. Hum Mol Genet, 2010, 19:1618-1632. [107] Fischer A. Targeting histone-modifications in Alzheimer’s disease. what is the evidence that this is a promising therapeutic avenue?[J]. Neuropharmacology, 2014, 80:95-102. |
[1] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[2] | 李建建, 贺宸靖, 黄小平, 向太和. 植物长链非编码RNA调控发育与胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(1): 48-58. |
[3] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[4] | 王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39. |
[5] | 王建勇, 邹永梅, 葛言彬, 王凯, 席梦利. 植物愈伤组织诱导过程中的表观遗传修饰研究进展[J]. 生物技术通报, 2021, 37(8): 253-262. |
[6] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[7] | 刘治民, 杨芷怡, 冀凤丹, 梅志超, 于佳慧, 解莉楠. 非生物胁迫下植物DNA甲基化研究进展[J]. 生物技术通报, 2020, 36(11): 122-132. |
[8] | 江芮, 吕柯孬, 潘学峰, 崔新霞, 申世刚, 丁良. 表观遗传药物研发的现状与挑战[J]. 生物技术通报, 2019, 35(8): 213-225. |
[9] | 谭玉荣, 王丹, 高璇, 刘进平. 植物长链非编码RNA研究进展[J]. 生物技术通报, 2018, 34(10): 1-10. |
[10] | 柳莹, 高丽, 冯俊荣. 线粒体表观遗传学研究进展[J]. 生物技术通报, 2018, 34(1): 60-66. |
[11] | 张潆月,马月辉,赵倩君. 环状RNA的研究进展[J]. 生物技术通报, 2017, 33(7): 29-34. |
[12] | 张娟娟, 乔玲, 朱恩东. 长链非编码RNA AK043773在脂肪细胞分化中的作用[J]. 生物技术通报, 2017, 33(12): 156-161. |
[13] | 刘宏博, 郑鹏, 印泽, 张同存. 应用CRISPR/Cas9系统下调长链非编码RNA HOTAIR[J]. 生物技术通报, 2017, 33(11): 180-187. |
[14] | 宋娜娜, 柴志欣, 钟金城. 长链非编码RAN的研究进展[J]. 生物技术通报, 2016, 32(9): 23-31. |
[15] | 奥旭东,萨如拉,王杰,王会敏,于海泉. 牛早期胚胎发育中AID基因的表达及其调节区DNA甲基化的动态变化[J]. 生物技术通报, 2016, 32(7): 242-249. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||