[1] Chakraborty S, Newton AC. Climate change, palnt diseases and food security:an over review[J]. Plant Pathology, 2011, 60:2-14. [2] 康振生. 我国植物真菌病害的研究现状及发展策略[J]. 植物保护, 2010, 36(3):9-12. [3] Berendsen RL, Pieterse CM, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17:478-486. [4] Doornbos RF, van Loon LC, Bakker PAHM. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review[J]. Agron Sustain Dev, 2012, 32:227-243. [5] Xiong ZQ, Tu XR, Wei SJ, et al. In vitro antifungal activity of antifungalmycin 702, a new polyene macrolide antibiotic, against the rice blast fungus Magnaporthe grisea[J]. Biotechnol Lett, 2013, 35:1475-1479. [6] Harikrishnan H, Shanmugaiah V, Balasubramanian N, et al. Antagonistic potential of native strain Streptomyces aurantiogriseus VSMGT1014 against sheath blight of rice disease[J]. World J Microbiol Biotechnol, 2014, 30:3149-3161. [7] Summerell BA, Laurence MH, Liew EC, et al. Biogeography and phylogeography of Fusarium:a review[J]. Fungal Divers, 2010, 44:3-13. [8] Zhao S, Liu DY, Ling N, et al. Bio-organic fertilizer application significantly reduces the Fusarium oxysporum population and alters the composition of fungi communities of watermelon Fusarium wilt rhizosphere soil[J]. Biol Fert Soils, 2014, 50:765-774. [9] Li CH, Zhao MW, Tang CM, et al. Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root[J]. Microbial Ecol, 2010, 59:344-356. [10] Araújo L, Gonçalves AE, Stadnik MJ. Ulvan effect on conidial germination and appressoria formation of Colletotrichum gloeosporioides[J]. Phytoparasitica, 2014, 42:631-640. [11] 彭卫福, 李昆太, 曾勇军. 水稻病害的微生物防治研究进展[J]. 江西农业大学学报, 2015, 37(4):625-631. [12] Compant S, Brader G, Muzammil S, et al. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases[J]. BioControl, 2013, 58(4):435-455. [13] Shirling EB, Gottlieb D. Methods for characterization of Streptom-yces species[J]. Int Journal of Syst Bacteriol, 1966, 16(3):313-340. [14] 中国科学院微生物研究所放线菌分类组. 链霉菌鉴定手册[M]. 北京:科学出版社, 1975. [15] 余佳清, 张志斌, 李希茜, 等. 一株具有抗真菌活性的放线菌菌株FXj9的分离和鉴定[J]. 植物保护, 2013, 39(5):158-164. [16] 阎逊初. 放线菌的分类和鉴定[M]. 北京:科学出版社, 1992. [17] Weller DM, Raaijmakers JM, Gardener BBM, et al. Microbial populations responsible for specific soil suppressiveness to plant pathogens 1[J]. Annu Rev Phytopathol, 2002, 40:309-348. [18] Sivasakthi S, Usharani G, Saranraj P. Biocontrol potentiality of plant growth promoting bacteria(PGPR)-Pseudomonas fluorescens and Bacillus subtilis:A review[J]. African Journal of Agricultural Research, 2014, 9(16):1265-1277. [19] Couillerot O, Loqman S, Toribio A, et al. Purification of antibiotics from the biocontrol agent Streptomyces anulatus S37 by centrifugal partition chromatography[J]. J Chromatogr B, 2014, 944:30-34. [20] Kim BS, Hwang BK. Microbial fungicides in the control of plant diseases[J]. J Phytopathology, 2007, 155:641-653. [21] 曹琦琦, 周登博, 郑丽, 等. 水稻纹枯病菌拮抗菌的筛选、鉴定及培养条件探索[J]. 中国生物防治学报, 2013, 29(2):270-276. [22] Glund K, Schlumbohm W, Bapat M, et al. Biosynthesis of quinoxaline antibiotics:purification and characterization of the quinoxaline-2-carboxylic acid activating enzyme from Streptomyces triostinicus[J]. Biochemistry, 1990, 29(14):3522-3527. [23] Praseuth AP, Wang CCC, Watanabe K, et al. Complete sequence of biosynthetic gene cluster responsible for producing triostin A and evaluation of quinomycin-type antibiotics from Streptomyces triostinicus[J]. Biotechnol Prog, 2008, 24(6):1226-1231. [24] Sato M, Nakazawa T, Tsunematsu Y, et al. Echinomycin biosynthesis[J]. Curr Opin Chem Biol, 2013, 17(4):537-545. [25] Singh V, Khan M, Khan S, et al. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network and genetic algorithm[J]. Appl Microbiol Biot, 2009, 82(2):379-385. |