生物技术通报 ›› 2016, Vol. 32 ›› Issue (11): 18-29.doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.003
刘国圣, 张大乐
收稿日期:
2016-03-23
出版日期:
2016-11-25
发布日期:
2016-11-11
作者简介:
刘国圣,男,研究方向:植物科学与技术;E-mail:15515228983@163.com
基金资助:
LIU Guo-sheng, ZHANG Da-le
Received:
2016-03-23
Published:
2016-11-25
Online:
2016-11-11
摘要: 功能标记是根据与表型紧密相关的功能基因内部特定区域的多态性序列,利用关联分析、表达谱分析、RNA干扰和QTL作图等方法开发而出的一种新型显性分子标记,此类标记可以对不同遗传背景下目标等位基因的有无作直接、快速的判定。简单介绍了功能标记的概念及特点,着重探讨功能标记作为一种辅助育种手段在小麦育种中的应用及其开发前景,以期为相关分子标记的开发提供参考。
刘国圣, 张大乐. 功能性分子标记在小麦育种中的应用[J]. 生物技术通报, 2016, 32(11): 18-29.
LIU Guo-sheng, ZHANG Da-le. The Application of the Functional Molecular Marker in Wheat Breeding[J]. Biotechnology Bulletin, 2016, 32(11): 18-29.
[1] 刘光兴. 遗传标记技术在海洋桡足类生物多样性和系统发生研究中的应用[J]. 中国海洋大学学报, 2007, 37(1):33-37. [2] 周延清. DNA分子标记技术在植物研究中的应用[M]. 北京:化学工业出版社, 2005:56-57. [3] Pang M, Percy RG, Hughs E, et al. Promoter anchored amplified polymorphism based on random amplified polymorphic DNA(PAAP-RAPD)in cotton[J]. Euphytica, 2009, 167(3):281-291. [4] Bagge M, Xia X, Lübberstedt T. Functional markers in wheat[J]. Current Opinion in Plant. Biology, 2007, 10(2):211-216. [5] Andersen JR, Lübberstedt T. Functional markers in plants[J]. Trends in Plant Science, 2003, 8(11):554-560. [6] 杨景华, 王士伟, 刘训言, 等. 高等植物功能性分子标记的开发与利用[J]. 中国农业科学, 2008, 41(11):3429-3436. [7] The Arabidopsis genome initiative. analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814):796-815. [8] Sherry A, Thuillet Anne-Céline, Yu JM, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection[J]. The Plant Journal, 2005, 44(6):1054-1064. [9] Kurowska M, Daszkowska-Golec A, Gruszka D, et al. TILLING-a shortcut in functional genomics[J]. Journal of Applied Genetics, 2011, 52(4):371-390. [10] Sunnucks P. Efficient genetic markers for population biology[J]. Trends in Ecology and Evolution, 2000, 15(5):199-203. [11] Brenchley R, Spannag M, Pfeifer M, et al. Analysis of the bread wheat genome using whole genome shotgun sequencing[J]. Nature. 2012, 491(7426):705-710. [12] Bagge M, Xia XC, Lubberstedt T. Funetional markers in wheat[J]. Current Opinion in Plant Biology, 2007, 10(2):211-216. [13] Arnér ESJ, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase[J]. European Journal of Biochemistry, 2000, 267(20):6102-6109. [14] Sun DJ, He ZH, Xia XC, et al. A novel STS marker for polyphenol oxidase activity in bread wheat[J]. Molecular Breeding, 2005, 16(3):209-218. [15] 王晓波, 马传喜, 何克勤, 等. 小麦2D染色体上多酚氧化酶(PPO)基因STS标记的开发与应用[J]. 中国农业科学, 2008, 41(6):1583-1590. [16] He XY, He ZH, Zhang LP, et al. Allelic variation of polyphenol oxidase(PPO)genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat[J]. Theoretical Applied Genetics, 2007, 115(1):47-58. [17] He XY, He ZH, Morris CF, et al. Cloning and phylogenetic analysis of polyphenol oxidase genes in common wheat and related species[J]. Genetic Resources and Crop Evolution, 2009, 56(3):311-321. [18] Wei JX, Geng HW, Zhang Y, et al. Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL[J]. Theoretical and Applied Genetics, 2015, 128(10):2067-2076. [19] Su ZQ, Hao CY, Zhang XY. Identification and development of a functional marker of TaGW2 associated with grain Weight in bread wheat(Triticum aestivum L. )[J]. Theoretical and Applied Genetics, 2010, 122(1):211-223. [20] Yang ZB, Bai ZY, Li XL, et al. SNP identification and allelic-specific PCR markers development for TaGW2, agene finked to wheat kernel weight[J]. Theoretical and Applied Genetics, 2012, 125(5):1057-1068. [21] Jiang QY, Hou J, Hao CY, et al. The wheat(T. aestivum)sucrose synthase 2 gene(TaSus2)active in endosperm development is associated with yield traits[J]. Funct Integr Genomics, 2011, 11(1):49-61. [22] Zhang YJ, Liu JD, Xia XC, et al. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat[J]. Mol Breeding, 2014, 34(3):1097-1107. [23] Ma DY, Yan J, He ZH, et al. Characterization of a cell wall inverta- se gene TaCwi-A1 on common wheat chromosome 2A and develop-ment of functional markers[J]. Mol Breeding, 2012, 29(1):43-52. [24] He XY, He ZH, Ma W, et al. Allelic variants of phytoene synthase 1(Psy1)genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour[J]. Mol Breeding, 2009, 23(4):553-563. [25] He XY, Zhang YL, He ZH, et al. Characterization of phytoene synthase 1 gene(Psy1)located on common wheat chromosome 7A and development of a functional marker[J]. Theor Appl Genet, 2008, 116(2):213-221. [26] Wang JW, He XY, He Z, et al. Cloning and phylogenetic analysis of phytoene synthase 1(Psy1)genes in common wheat and related species[J]. Hereditas, 2009, 146(5):208-256. [27] Zhang CY, Dong CH, He XY, et al. Allelic Variants at the TaZds-D1 locus on wheat chromosome 2DL and their association with yellow pigment content[J]. Crop Sci, 2011, 51(4):1580-1590. [28] Dong CH, Ma ZY, Xia XC, et al. Allelic variation at the TaZds-A1 locus on wheat chromossome 2A and development of a functional marker in common wheat[J]. Journal of Integrative Agriculture, 2012, 11(7):1067-1074. [29] 董长海. 普通小麦籽粒黄色素含量相关基因的克隆与功能标记开发[D]. 保定:河北农业大学, 2011. [30] Geng HW, Xia XC, Ghang LP, et al. Development of functional markers for a lipoxygenase gene Talox-B1 on chromosome 4BS in common wheat[J]. Crop Science of America, 2012, 52(2):568-576. [31] 吴萍. 小麦籽粒脂肪氧化酶活性功能标记的开发与应用[D]. 合肥:安徽农业大学, 2013. [32] Guo GA, Song YX, Zhou RH, et al. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene[J]. New Phytologist, 2010, 185(3):841-851. [33] Slierman JD, Yan L, Talbert L, et al. A PCK marker for growth habit in common wheat based on allelic variation Vrn-A1 gene[J]. Crop Science Society of America, 2004, 44(5):1832-1838. [34] Zhao XL, Ma W, Gale KR, et al. Identification of SNPs and development of functional markers for LMW-GS genes at Glu-D3 and Glu-B3 loci in bread wheat(Triticum aestivum L. )[J]. Molecular Breeding, 2007, 20(3):223-231. [35] Liu SX, Chao SM, Anderson JA. New DNA markers for high molecular weight glutenin subunits in wheat[J]. Theor Appl Genet, 2008, 118(1):177-183. [36] Ma W, Zhang W, Gale KR. Multiplex-PCR typing of high molecular weight glutenin alleles in wheat[J]. Euphytica, 2003, 134:51-60. [37] Schwarz G, Felsenstein FG, Wenzel G. Development and validation of a PCR-based marker assayfor negative selection of the HMW glutenin allele Glu-B1-1d(Bx-6)in wheat[J]. Theor Appl Genet, 2004, 109(5):1064-1069. [38] Ragupathy R, Naeem HA, Reimer E, et al. Evolutionary origin of the segmentalduplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7(Bx7 0E )high molecular weight glutenin subunit[J]. Theor Appl Genet, 2008, 116(2):283-296. [39] Lei ZS, Gale KR, He ZH, et al. Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat[J]. J Cereal Sci, 2006, 43(1):94-101. [40] Wang LH, Li GY, Pena RJ, et al. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat(Triticum aestivum L. )[J]. J Cereal Sci, 2010, 51(3):305-312. [41] Wang LH, Zhao XL, He ZH, et al. Characterization of low-molecular-weight glutenin subunit Glu-B3 genes and development of STS markers in commonwheat(Triticum aestivum L. )[J]. Theor Appl Genet, 2009, 118(3):525-539. [42] Mika S, Patricia V, Goro I, et al. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs[J]. Molecular Breeding, 2009, 23(2):209-217. [43] 王昊龙, 韩俊杰, 李卫华, 等. 不同抗性淀粉含量的小麦品种(系)SBEⅡa基因启动子序列分析[J]. 石河子大学学报:自然科学版, 2015, 33(1):60-66. [44] 鞠丽萍, 张帆, 蒋雷, 等. 小麦TaFer-A1 基因抗旱相关分子标记的开发[J]. 麦类作物学报, 2013, 33(5):901-906. [45] 王智兰, 毛新国, 李昂, 等. 小麦蛋白磷酸酶2A结构亚基基因TaPP2Aa的功能标记作图[J], 中国农业科学, 2011, 44(12):2411-2421. [46] 张帆, 蒋雷, 鞠丽萍, 等. 一个普通小麦Trx超家族新基因TaNRX的克隆与抗旱相关标记开发[J]. 作物学报, 2014, 40(1):29-36. [47] 吕广德. 小麦TaOSCA1.4基因的克隆、标记开发和功能分析[D]. 泰安:山东农业大学. 2015. [48] Gennaro A, Koebner RMD, Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat[J]. Funct Integr Genomics, 2009, 9(3):325-334. [49] Helguera M, Vanzetti L, Soria M, et al. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines[J]. Crop Sci, 2005, 45(2):728-734. [50] 刘兴舟. Vrn、Ppd-D1和Lr34/Yr18基因在山东小麦品种中的分子检测和分布的研究[D]. 泰安:山东农业大学, 2009. [51] Tommasini L, Yahiaoui N, Srichumpa P, et al. Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool[J]. Theor Appl Genet, 2006, 114(1):165-175. [52] 伍玲, 夏先春, 朱华忠, 等. CIMMYT 273个小麦品种抗病基因Lr34/Yr18/Pm38的分子标记检测[J]. 中国农业科学, 2010, 43(22):4553-4561. [53] Lagudah ES, Krattinger SG, Herrera-Foessel S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens[J]. Theor Appl Genet, 2009, 119(5):889-898. [54] Liu D, Xia XC, He ZH, et al. A novel homeobox-like gene associated with reaction to stripe rust and powdery mildew in common wheat[J]. Phytopathology, 2009, 98(12):1291-1296. [55] 张照贵. 小麦TaSnRK2_10基因的克隆_标记开发和功能分析[D]. 泰安:山东农业大学, 2014. [56] 王倩, 毛新国, 昌小平, 等. 小麦TaSnRK2. 10的多态性及与农艺性状的关联[J]. 中国农业科学, 2014, 47(10):1865-1877. [57] Wei B, Jing RL, Wang CS, et al. Dreb1 genes in wheat(Triticum aestivum L. )development of functional markers and gene mapping based on SNPs[J]. Molecular Breeding, 2009, 23(1):13-22. [58] Himi E, Noda K. Red gain colour gene(R)of wheat is a myb-type transcription factor[J]. Euphytica, 2005, 143:239-242. [59] Himi E, Maekawa M, Miura H, et al. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat[J]. Theor Appl Genet, 2011, 122(8):1561-1576. [60] 李婷, 陈杰, 陈锋, 崔党群. 黄淮麦区地方小麦品种子粒颜色相关基因Tamyb10-1等位变异检测[J]. 植物遗传资源学报, 2014, 15(5):1089-1095. [61] 陈杰, 陈锋, 詹克慧, 等. 普通小麦籽粒Tamyb10基因等位变异的分子检测[J]. 麦类作物学报, 2013, 33(2):224-229. [62] 陈杰. 小麦籽粒和面粉颜色相关性状的基因型鉴定及其功能标记开发[D]. 郑州:河南农业大学, 2013. [63] Yang Y, Zhao XL, Xia LQ, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats[J]. Theoretical and Applied Genetics, 2007, 115(7):971-980. [64] 刘世鑫. 休眠基因Viviparous-1A在中国小麦3A染色体上等位变异的鉴定及STS分子标记的开发[D]. 呼和浩特:内蒙古农业大学, 2012. [65] Chen F, Zhang FY, Xia XC, et al. Distribution of puroindoline alleles in bread wheat cultivars of the Yellow and Huai valley of China and discovery of a novel puroindoline a allele without PINA protein[J]. Mol Breeding, 2012, 29(2):371-378. [66] Ellis M, Spielmeyer W, Gale R, et al. “Perfect” markers for the Rht-B1b and Rht-Dlb dwarfing genes in wheat[J]. Theoretical and Applied Genetics, 2002, 105(6-7):1038-1042. [67] 冉从福, 邵慧, 余静, 等. 小麦CO-like基因TaC09的克隆及结构分析[J]. 麦类作物学报, 2014, 34(10):1319-1326. [68] Distelfeld A, Uauy C, Fahima T, et al. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker[J]. New Phytologist, 2006, 169(4):753-763. [69] Uauy C, Distelfeld A, Fahima T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat[J]. Science, 2006, 314(5803):1298-1301. [70] Zhang YJ, Miao XL, Xia XC, et al. Cloning of seed dormancy genes(TaSdr)associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker[J]. Theor Appl Genet, 2014, 127(4):855-866. [71] 李冰, 张照贵, 王佳佳, 等. 小麦GDH1基因克隆及其功能标记开发[J]. 山东农业科学, 2014, 46(10):6-11. [72] 刘亚男, 夏先春, 何中虎. 普通小麦TaDep1基因克隆与特异性标记开发[J]. 作物学报, 2013, 39(4):589-598. [73] 雷梦林, 李昂, 昌小平, 等. 小麦转录因子基因W16的功能标记作图和关联分析[J]. 中国农业科学, 2012, 45(9):1667-1675. [74] Chang JZ, Zhang JN, Mao XG, et al. Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat[J]. Planta, 2013, 263(6):1495-1508. [75] 周渭皓, 孙建喜, 陈杰, 等. 甘肃春小麦八氢番茄红素基因的等位变异[J]. 麦类作物学, 2014, 34(8):1036-1043. [76] Slade AJ, Fuerstenberg SI, Loeffler D, et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING[J]. Nature Biotechnology, 2004, 23(1):75-81. [77] 张丽, 颜泽洪, 郑有良, 等. 小麦中国春背景下长穗堰麦草E e 染色体组特异AFLP及STS标记的建立[J]. 农业生物技术学报,2008,16(3):465-473. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[3] | 肖亮, 吴正丹, 陆柳英, 施平丽, 尚小红, 曹升, 曾文丹, 严华兵. 木薯重要性状基因的研究进展[J]. 生物技术通报, 2023, 39(6): 31-48. |
[4] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
[5] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[6] | 赵静雅, 彭梦雅, 张时雨, 单艺轩, 邢小萍, 施艳, 李海洋, 杨雪, 李洪连, 陈琳琳. C2H2锌指转录因子FpCzf7参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38(8): 216-224. |
[7] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[8] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[9] | 杨亚杰, 李昱樱, 申状状, 陈天, 荣二花, 吴玉香. 草棉同源多倍体后代筛选及性状鉴定[J]. 生物技术通报, 2022, 38(5): 64-73. |
[10] | 孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139. |
[11] | 孙淑芳, 骆永丽, 李春辉, 金敏, 胥倩. UPLC-MS/MS测定小麦茎秆木质素单体交联结构的方法[J]. 生物技术通报, 2022, 38(10): 66-72. |
[12] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[13] | 田李, 李俊娇, 戴小枫, 张丹丹, 陈捷胤. 从功能基因到生物学性状:大丽轮枝菌致病性形成的分子基础[J]. 生物技术通报, 2022, 38(1): 51-69. |
[14] | 李文宗, 李春萍, 梁鑫, 王润豪, 王磊. 无人机叶面喷施梯度微肥对不同品种冬小麦籽粒矿质元素的影响[J]. 生物技术通报, 2021, 37(9): 152-160. |
[15] | 高鹏飞, 席飞虎, 张泽宇, 胡凯强, 陈凯, 魏文桃, 丁家治, 顾连峰. 植物VIGS技术及其在林业科学中的研究进展[J]. 生物技术通报, 2021, 37(5): 141-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||