生物技术通报 ›› 2018, Vol. 34 ›› Issue (7): 14-23.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0442
吴德伟1, 汪姣姣2, 谢道昕2
收稿日期:
2018-05-11
出版日期:
2018-07-26
发布日期:
2018-08-01
作者简介:
吴德伟,男,博士,研究方向:植物生物胁迫反应及油菜菌核病;E-mail:dewei@yzu.edu.cn
基金资助:
WU De-wei1, WANG Jiao-jiao2, XIE Dao-xin2
Received:
2018-05-11
Published:
2018-07-26
Online:
2018-08-01
摘要: 植物固定生长不能移动,时刻面临着害虫咬噬、病原微生物侵染等多种外界环境胁迫。为了应对这些胁迫,植物进化出了复杂且被精细调控的防御系统,包括利用植物激素调控抗性基因的表达以及抗性相关次生代谢产物的积累等。有趣的是,许多昆虫和病原微生物被发现能够采用各种策略来逃避、克服甚至操控植物防御系统,以促进其对宿主植物的利用。茉莉素是一种重要的脂质植物激素,调控生长发育的诸多方面,同时也在植物应对多种生物胁迫和非生物胁迫的防御反应中发挥重要作用。近年来,茉莉素的生物合成、信号转导和生理功能等均得到了广泛研究,并取得了一系列重要进展。概述了茉莉素的生物合成调控与信号转导途径,同时也探讨了茉莉素对植物生物胁迫反应的调控机制,并介绍了昆虫和病原微生物对植物茉莉素途径的操控策略,以期为深入理解茉莉素介导的植物与病原生物之间的相互作用提供参考。
吴德伟, 汪姣姣, 谢道昕. 茉莉素与植物生物胁迫反应[J]. 生物技术通报, 2018, 34(7): 14-23.
WU De-wei, WANG Jiao-jiao, XIE Dao-xin. Jasmonate Action and Biotic Stress Response in Plants[J]. Biotechnology Bulletin, 2018, 34(7): 14-23.
[1] Wasternack C, Hause B.Jasmonates:biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany[J]. Ann Bot, 2013, 111(6):1021-1058. [2] Huang H, Liu B, Liu L, et al.Jasmonate action in plant growth and development[J]. J Exp Bot, 2017, 68(6):1349-1359. [3] Zhang L, Zhang F, et al.Jasmonate signaling and manipulation by pathogens and insects[J]. J Exp Bot, 2017, 68(6):1371-1385. [4] Yan C, Xie D.Jasmonate in plant defence:sentinel or double agent?[J]. Plant Biotechnol J, 2015, 13(9):1233-1240. [5] Browse J, Jasmonate passes muster:A receptor and targets for the defense hormone[J]. Annu Rev Plant Biol, 2009, 60:183-205. [6] Howe GA, Jander G.Plant immunity to insect herbivores[J]. Annu Rev Plant Biol, 2008, 59:41-66. [7] Liechti R, Farmer EE.The jasmonate pathway[J]. Science, 2002, 296(5573):1649-1650. [8] Wasternack C, Song S.Jasmonates:biosynthesis, metabolism, and signaling by proteins activating and repressing transcription[J]. J Exp Bot, 2017, 68(6):1303-1321. [9] Chini A, Monte I, Zamarreno AM, et al.An OPR3-independent pathway uses 4, 5-didehydrojasmonate for jasmonate synthesis[J]. Nat Chem Biol, 2018, 14(2):171-178. [10] Fonseca S, Chini A, Hamberg M, et al.(+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate[J]. Nat Chem Biol, 2009, 5(5):344-350. [11] Staswick PE, Tiryaki I.The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis[J]. Plant Cell, 2004, 16(8):2117-2127. [12] Yan J, Li S, Gu M, et al.Endogenous bioactive jasmonate is composed of a set of(+)-7-iso-JA-amino acid conjugates[J]. Plant Physiol, 2016, 172(4):2154-2164. [13] Browse J, Howe GA.New weapons and a rapid response against insect attack[J]. Plant Physiol, 2008, 146(3):832-838. [14] Mousavi SAR, Chauvin A, Pascaud F, et al.GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling[J]. Nature, 2013, 500(7463):422-426. [15] Yan C, Fan M, Yang M, et al.Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Mol Cell, 2018, 70(1):136-149. [16] Hu P, Zhou W, Cheng ZW, et al.JAV1 Controls jasmonate-regulated plant defense[J]. Mol Cell, 2013, 50(4):504-515. [17] Xie DX, Feys BF, James S, et al.COI1:An Arabidopsis gene required for jasmonate-regulated defense and fertility[J]. Science, 1998, 280(5366):1091-1094. [18] Song S, Qi T, Wasternack C, et al.Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Curr Opin Plant Biol, 2014, 21:112-119. [19] Xu L, Liu F, Lechner E, et al.The SCFCOI1 ubiquitin-ligase complexes are required for jasmonate response in Arabidopsis[J]. Plant Cell, 2002, 14(8):1919-1935. [20] Yan Y, Stolz S, Chételat A, et al.A downstream mediator in the growth repression limb of the jasmonate pathway[J]. Plant Cell, 2007, 19(8):2470-2483. [21] Thines B, Katsir L, Melotto M, et al.JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling[J]. Nature, 2007, 448(7154):661-665. [22] Chini A, Fonseca S, Fernández G, et al.The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448(7154):666-671. [23] Yan JB, Zhang C, Gu M, et al.The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor[J]. Plant Cell, 2009, 21(8):2220-2236. [24] Sheard LB, Tan X, Mao HB, et al.Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468(7322):400-405. [25] Katsir L, Schilmiller AL, Staswick PE, et al.COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine[J]. Proc Natl Acad Sci USA, 2008, 105(19):7100-7105. [26] Yan J, Li H, Li S, et al.The Arabidopsis F-box protein CORONATINE INSENSITIVE1 is stabilized by SCFCOI1 and degraded via the 26S proteasome pathway[J]. Plant Cell, 2013, 25(2):486-498. [27] Qi T, Wang J, et al.Regulation of jasmonate-induced leaf senesc-ence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis[J]. Plant Cell, 2015, 27(6):1634-1649. [28] Schweizer F, Fernández-Calvo P, Zander M, et al.Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, andMYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior[J]. Plant Cell, 2013, 25(8):3117-3132. [29] Fernandez-Calvo P, Chini A, Fernandez-Barbero G, et al.The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses[J]. Plant Cell, 2011, 23(2):701-715. [30] Cheng Z, Sun L, Qi T, et al.The bHLH transcription factor MYC3 interacts with the Jasmonate ZIM-domain proteins to mediate jasmonate response in Arabidopsis[J]. Mol Plant, 2011, 4(2):279-288. [31] Chen Q, Sun J, Zhai Q, et al.The basic helix-loop-helix transcription factor myc2 directly represses plethora expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis[J]. Plant Cell, 2011, 23(9):3335-3352. [32] Song S, Qi T, Huang H, et al.The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. Plant Cell, 2011, 23(3):1000-1013. [33] Zhang F, Yao J, Ke J, et al.Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling[J]. Nature, 2015, 525(7568):269-273. [34] Chen R, Jiang H, Li L, et al.The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors[J]. Plant Cell, 2012, 24(7):2898-2916. [35] Zhu Z, An F, Feng Y, et al.Derepression of ethylene-stabilized transcription factors(EIN3/EIL1)mediates jasmonate and ethylene signaling synergy in Arabidopsis[J]. Proc Natl Acad Sci USA, 2011, 108(30):12539-12544. [36] Shyu C, Figueroa P, Depew CL, et al.JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of jasmonate responses in Arabidopsis[J]. Plant Cell, 2012, 24(2):536-550. [37] Pauwels L, Barbero GF, Geerinck J, et al.NINJA connects the co-repressor TOPLESS to jasmonate signalling[J]. Nature, 2010, 464(7289):788-791. [38] Song S, Huang H, Gao H, et al.Interaction between MYC2 and ETHYLENE INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling in Arabidopsis[J]. Plant Cell, 2014, 26(1):263-279. [39] Hong GJ, Xue XY, Mao YB, et al.Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24(6):2635-2648. [40] Ishida T, Kurata T, Okada K, et al.A genetic regulatory network in the development of trichomes and root hairs[J]. Annu Rev Plant Biol, 2008, 59:365-386. [41] Winkel-Shirley B.Biosynthesis of flavonoids and effects of stress[J]. Curr Opin Plant Biol, 2002, 5(3):218-223. [42] Broun P.Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis[J]. Curr Opin Plant Biol, 2005, 8(3):272-279. [43] Qi T, Song S, Ren Q, et al.The Jasmonate-ZIM-Domain proteins interact with the WD-Repeat/bHLH/MYB Complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(5):1795-1814. [44] Boter M, Golz JF, Gimenez-Ibanez S, et al.FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. Plant Cell, 2015, 27(11):3160-3174. [45] Fonseca S, Fernandez-Calvo P, et al.bHLH003, bHLH013 and bHLH017 are new targets of JAZ repressors negatively regulating JA responses[J]. PLoS One, 2014, 9(1):e86182. [46] Song SS, Qi TC, Fan M, et al.The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development[J]. PLoS Genetics, 2013, 9(7):e1003653. [47] Sasaki-Sekimoto Y, Jikumaru Y, Obayashi T, et al.Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1(JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis[J]. Plant Physiol, 2013, 163(1):291-304. [48] Nakata M, Mitsuda N, Herde M, et al.A bHLH-type transcription factor, ABA-INDUCIBLE BHLH-TYPE TRANSCRIPTION FACTOR/JA-ASSOCIATED MYC2-LIKE1, acts as a repressor to negatively regulate jasmonate signaling in Arabidopsis[J]. Plant Cell, 2013, 25(5):1641-1656. [49] Ning Y, Liu W, Wang GL.Balancing immunity and yield in crop plants[J]. Trends Plant Sci, 2017, 22(12):1069-1079. [50] Mao YB, Liu YQ, et al.Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance[J]. Nat Commun, 2017, 8:13925. [51] Musser RO, Hum-Musser SM, Eichenseer H, et al.Herbivory:caterpillar saliva beats plant defences[J]. Nature, 2002, 416(6881):599-600. [52] Chung SH, Rosa C, Scully ED, et al.Herbivore exploits orally secreted bacteria to suppress plant defenses[J]. Proc Natl Acad Sci USA, 2013, 110(39):15728-15733. [53] Verhage A, Vlaardingerbroek I, Raaymakers C, et al.Rewiring of the jasmonate signaling pathway in Arabidopsis during insect herbivory[J]. Front Plant Sci, 2011, 2:47. [54] Geng X, Cheng J, Gangadharan A, et al.The coronatine toxin of Pseudomonas syringae is a multifunctional suppressor of Arabidopsis defense[J]. Plant Cell, 2012, 24(11):4763-4774. [55] Zheng XY, Spivey NW, Zeng W, et al.Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation[J]. Cell Host Microbe, 2012, 11(6):587-596. [56] Melotto M, Underwood W, Koczan J, et al.Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5):969-980. [57] Cui H, Wang Y, et al.Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cell Host Microbe, 2010, 7(2):164-175. [58] Zhou Z, Wu Y, Yang Y, et al.An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion[J]. Plant Cell, 2015, 27(7):2032-2041. [59] Jiang S, Yao J, Ma KW, et al.Bacterial effector activates jasmonate signaling by directly targeting JAZ transcriptional repressors[J]. PLoS Pathog, 2013, 9(10):e1003715. [60] Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, et al.The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis[J]. PLoS Biology, 2014, 12(2):e1001792. [61] Yang L, Teixeira PJ, Biswas S, et al.Pseudomonas syringae type III effector HopBB1 promotes host transcriptional repressor degradation to regulate phytohormone responses and virulence[J]. Cell Host Microbe, 2017, 21(2):156-168. [62] El Oirdi M, El Rahman TA, Rigano L, et al.Botrytis cinerea manipulates the antagonistic effects between immune pathways to promote disease development in tomato[J]. Plant Cell, 2011, 23(6):2405-2421. [63] Zhu W, Wei W, Fu Y, et al.A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance[J]. PLoS One, 2013, 8(1):e53901. [64] Plett JM, Daguerre Y, Wittulsky S, et al.Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid(JA)responsive genes[J]. Proc Natl Acad Sci USA, 2014, 111(22):8299-8304. [65] Gimenez-Ibanez S, Chini A, Solano R.How microbes twist jasmonate signaling around their little fingers[J]. Plants(Basel), 2016, 5(1):9. [66] Thatcher LF, Gardiner DM, Kazan K, et al.A highly conserved effector in Fusarium oxysporum is required for full virulence on Arabidopsis[J]. Mol Plant Microbe In, 2012, 25(2):180-190. [67] Thatcher LF, Manners JM, Kazan K.Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis[J]. Plant J, 2009, 58(6):927-939. [68] Sugio A, Kingdom HN, MacLean AM, et al. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis[J]. Proc Natl Acad Sci USA, 2011, 108(48):E1254-E1263. [69] Ziebell H, Murphy AM, Groen SC, et al.Cucumber mosaic virus and its 2b RNA silencing suppressor modify plant-aphid interactions in tobacco[J]. Sci Rep, 2011, 1:187. [70] Lewsey MG, Murphy AM, MacLean D, et al. Disruption of two defensive signaling pathways by a viral RNA silencing suppressor[J]. Mol Plant Microbe Intrant, 2010, 23(7):835-845. [71] Wu D, Qi T, Li WX, et al.Viral effector protein manipulates host hormone signaling to attract insect vectors[J]. Cell Res, 2017, 27(3):402-415. [72] Li R, Weldegergis BT, Li J, et al.Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance[J]. Plant Cell, 2014, 26(12):4991-5008. [73] Yang JY, Iwasaki M, Machida C, et al.betaC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses[J]. Gene Dev, 2008, 22(18):2564-2577. [74] Zhang T, Luan JB, Qi JF, et al.Begomovirus-whitefly mutualism is achieved through repression of plant defences by a virus pathogenicity factor[J]. Mol Ecol, 2012, 21(5):1294-1304. [75] Zhang C, Ding Z, Wu K, et al.Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Mol Plant, 2016, 9(9):1302-1314. [76] Lozano-Duran R, Rosas-Diaz T, Gusmaroli G, et al.Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana[J]. Plant Cell, 2011, 23(3):1014-1032. [77] Jia Q, Liu N, et al.CLCuMuB betaC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana[J]. PLoS Pathog, 2016, 12(6):e1005668. [78] Westwood JH, Lewsey MG, Murphy AM, et al.Interference with jasmonic acid-regulated gene expression is a general property of viral suppressors of RNA silencing but only partly explains virus-induced changes in plant-aphid interactions[J]. J Gen Virol, 2014, 95:733-739. [79] Rojas MR, Hagen C, Lucas WJ, et al.Exploiting chinks in the plant’s armor:evolution and emergence of geminiviruses[J]. Annu Rev Phytopathol, 2005, 43:361-394. [80] Cui X, Li G, et al.A begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus[J]. J Virol, 2005, 79(16):10764-10775. [81] Li HW, Lucy AP, Guo HS, et al.Strong host resistance targeted against a viral suppressor of the plant gene silencing defence mechanism[J]. EMBO J, 1999, 18(10):2683-2691. [82] Oka K, Kobayashi M, Mitsuhara I, et al.Jasmonic acid negatively regulates resistance to tobacco mosaic virus in tobacco[J]. Plant Cell Physiol, 2013, 54(12):1999-2010. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[6] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[7] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[8] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[9] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[10] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[11] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[12] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[13] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[14] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[15] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||