生物技术通报 ›› 2018, Vol. 34 ›› Issue (7): 48-56.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0425
郭宾会1, 戴毅2, 宋丽2
收稿日期:
2018-05-07
出版日期:
2018-07-26
发布日期:
2018-08-01
作者简介:
郭宾会,男,博士,研究方向:植物代谢调控与天然产物;E-mail:bhguo@yzu.edu.cn
基金资助:
GUO Bin-hui1, DAI Yi2, SONG Li2
Received:
2018-05-07
Published:
2018-07-26
Online:
2018-08-01
摘要: 植物激素是指在植物体内某些部位合成、可被运输到其他部位调控植物生长发育的微量有机物质,在植物生命活动中发挥重要作用。根系是作物吸收水分和养分的重要器官,其形态决定了作物获得养分和水分的能力。作物发达的根系与其抵抗干旱环境胁迫息息相关,而植物激素在作物根系发育中发挥关键作用,因此深入了解干旱胁迫下植物激素对作物根系发育的影响对农业的安全生产是至关重要的。本文就干旱胁迫下植物激素如何调控及不同激素协同调控作物根系生长发育的研究进行了概述,并讨论了激素在作物抗旱上应用的意义及将来可能开展的研究方向。
郭宾会, 戴毅, 宋丽. 干旱下植物激素影响作物根系发育的研究进展[J]. 生物技术通报, 2018, 34(7): 48-56.
GUO Bin-hui, DAI Yi, SONG Li. Research Progress on the Effects of Phytohormones on Crop Root System Development Under Drought Condition[J]. Biotechnology Bulletin, 2018, 34(7): 48-56.
[1] Robertson GP, Bruulsema TW, Gehl RJ, et al.Nitrogen-climate interactions in US agriculture[J]. Biogeochemistry, 2013, 114:41-70. [2] 中华人民共和国年国民经济和社会发展统计公报[R]. 中华人民共和国国家统计局.华人民共和国年国民经济和社会发展统计公报[R]. 中华人民共和国国家统计局. 北京, 2016. [3] Thu NB, Nguyen QT, Hoang XL, et al.Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering[J]. BioMed Research International, 2014, 2014:809736. [4] Pierik R, Testerink C.The art of being flexible:how to escape from shade, salt, and drought[J]. Plant Physiology, 2014, 166(1):5-22. [5] Prince SJ, Song L, Qiu D, et al.Genetic variants in root architecture-related genes in a Glycine soja accession, a potential resource to improve cultivated soybean[J]. BMC Genomics, 2015, 16:132. [6] Wu SW, Hu CX, Tan QL, et a1. Effects of molybdenum on water utilization, antioxidative defense system and osmotic-adjustment ability in winter wheat(Triticum aestivum)under drought stress[J]. Plant Physiology and Biochemistry, 2014, 83:365-374. [7] 潘瑞炽, 王小菁, 李娘辉. 植物生理学[M]. 北京:高等教育出版社, 2004. [8] Benesova M, Hola D, Fischer L, et a1. The physiology and proteomics of drought tolerance in maize:early stomatal closure as a cause of lower tolerance to short term dehydration[J]. PLoS One, 2012, 7(6):e38017. [9] Tiwari S, Lata C, Chauhan PS, et al.A functional genomic perspective on drought signalling and its crosstalk with phytohormone-mediated signalling pathways in plants[J]. Current Genomics, 2017, 18(6):469-482. [10] Malamy JE.Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant Cell Environ, 2005, 28:67-77. [11] Osmont KS, Sibout R, Hardtke CS.Hidden branches:developments in root system architecture[J]. Annu Rev Plant Biol, 2007, 58:93-113. [12] Kunert KJ, Vorster BJ, Fenta BA, et al.Drought stress responses in soybean roots and nodules[J]. Front Plant Sci, 2016, 7:1015. [13] Prince SJ, Valliyodan B, Ye H, et al.Understanding genetic control of root system architecture in soybean:Insights into the genetic basis of lateral root number[J]. Plant Cell Environ, 2018, doi:10. 1111/pce. 13333. [14] Chimungu JG, Maliro MFA, Nalivata PC, et al.Utility of root cortical aerenchyma under water limited conditions in tropical maize(Zea mays, L.)[J]. Field Crops Research, 2015, 171:86-98. [15] Ye H, Roorkiwal M, Valliyodan B, et al.Genetic diversity of root system architecture in response to drought stress in grain legumes[J]. J Exp Bot, 2018, 69(13):3267-3277. [16] 赵坤, 董守坤, 刘丽君, 等. 干旱胁迫对春大豆开花期根系生理特性的影响[J]. 大豆科学, 2010, 29:437-439. [17] 闫春娟, 王文斌, 涂晓杰, 等. 不同生育时期干旱胁迫对大豆根系特性及产量的影响[J]. 大豆科学, 2013, 1:59-62. [18] Cutler SR, Rodriguez PL, Finkelstein RR, et a1. Abscisic acid:Emergence of a core signaling network[J]. Annu Rev Plant Biol, 2010, 61:651-679. [19] Schroeder JI, Kwak JM, Alln GJ.Guard cell abscisic acid signaling and engineering drought hardiness in plants[J]. Nature, 2001, 410:327-330. [20] Verslues PE, Zhu JK.Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J]. Biochemical Society Transactions, 2005, 33(2):375-379. [21] Ikegami K, Okamoto M, Seo M, et al.Activation of abscisic acid biosynthesis in the leaves of Arabidopsis thaliana in response to water deficit[J]. J Plant Res, 2009, 122(2):235-243. [22] Zhang JH, Zhang XP, Liang JS.Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment[J]. New Phytol, 1995, 131:329-336. [23] Shanrp E, Lenoble ME.ABA, ethylene and the control of shoot and root growth under water stress[J]. J Exp Bot, 2002, 53:33-37. [24] Li C, Shen H, Wang T, et al.ABA regulates subcellular redistribution of OsABI-LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa[J]. Plant Cell Physiol, 2015, 56(12):2396-2408. [25] Shi L, Guo M, Ye N, et al.Reduced ABA accumulation in the root system is caused by ABA exudation in upland rice(Oryza sativa L. var. Gaoshan1)and this enhanced drought adaptation[J]. Plant Cell Physiol, 2015, 56(5):951-964. [26] Ji H, Li X.ABA mediates PEG-mediated premature differentiation of root apical meristem in plants[J]. Plant Signal Behav, 2014, 9(11):e977720. [27] Wilkinson S, Davies WJ.ABA-based chemical signalling:the co-ordination of responses to stress in plants[J]. Plant Cell Environ, 2002, 25:195-210. [28] Saini S, Sharma I, Kaur N, et al.Auxin:a master regulator in plant root development[J]. Plant Cell Rep, 2013, 32(6):741-757. [29] 闫志利, 轩春香牛俊义, 等. 干旱胁迫及复水对豌豆根系内源激素含量的影响[J]. 中国生态农业学报, 2009, 17(2):297-301. [30] Ge L, Chen H, Jiang JF, et al.Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity[J]. Plant Physiology, 2004, 135:1502-1513. [31] Zhu ZX, Liu Y, Liu SJ, et al.A gain-of-function mutation in OSIAA11 affects lateral root development in rice[J]. Molecular Plant, 2012, 5(1):154-161. [32] Yamamoto Y, Kamiya N, Morinaka Y, et a1. Auxin biosynthesis by the YUCCA genes in rice[J]. Plant Physiol, 2007, 143:1362-1371. [33] Woo YM, Park HJ, Park JJ, et a1. Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and all appropriate root to shoot ratio[J]. Plant Mol Biol, 2007, 65:125-136. [34] Zhang Q, Li J, Zhang W, et al.The putative auxin efflux carrier OsPIN3t is involved in the drought stress response and drought tolerance[J]. Plant J, 2012, 72(5):805-816. [35] Chen D, Richardson T, Chai S, et al.Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat[J]. Plant Cell Physiol, 2016, 57(10):2076-2090. [36] Hao YJ, Wei W, Song QX, et al.Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant J, 2011, 68(2):302-313. [37] Uga Y, Sugimoto K, Ogawa S, et al.Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions[J]. Nat Genet, 2013, 45:1097-1102. [38] Guseman JM, Webb K, Srinivasan C, et al.DRO1 influences root system architecture in Arabidopsis and Prunus species[J]. Plant J, 2017, 89:1093-1105. [39] Aloni R, Langhans M, Aloni E, et al.Role of cytokinin in the regulation of root gravitropism[J]. Planta, 2004, 220:177-182. [40] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003, 15:2532-2550. [41] Riefler, M, Novak O, Strnad M, et al. Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J]. The Plant Cell, 2006, 18:40-54. [42] Lohar DP, Schaff JE, Laskey JG, et al.Cytokinins play opposite roles in lateral root formation, and nematode and Rhizobial symbioses[J]. Plant J, 2004, 38(2):203-214. [43] 李欣欣, 廖红, 赵静. 吲哚乙酸、吲哚丁酸和萘乙酸对大豆幼根生长的影响[J]. 华南农业大学学报, 2014, 35(3):35-40. [44] Gao S, Fang J, Xu F, et al.CYTOKININ OXIDASE/DEHYDROGENASE4 integrates cytokinin and auxin signaling to control rice crown root formation[J]. Plant Physiology, 2014, 165(3):1035-1046. [45] Pospíšilová H, Jiskrová E, Vojta P, et al.Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress[J]. Nature Biotechnology, 2016, 25(33):692-705. [46] Ramireddy E, Hosseini SA, Eggert K, et al.Root engineering in barley:Increasing cytokinin degradation produces a larger root system, mineral enrichment in the shoot and improved drought tolerance[J]. Plant Physiol, 2018, doi:10. 1104/pp. 18. 00199. [47] 吴忠义, 张中保, 李向龙, 等. 通过促进根系生长发育来创制抗旱玉米新种质材料[C]. 武汉:第一届全国玉米生物学学术研讨会论文汇编, 2015. [48] Davière JM, Achard P.Gibberellin signaling in plants[J]. Development, 2013, 140(6):1147-1151. [49] Wang D, Pan Y, Zhao X, et al.Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice[J]. BMC Genomics, 2011, 12:149. [50] Negi S, Ivanchenko MG, Muday GK.Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana[J]. Plant Journal, 2008, 55(2):175-187. [51] 王金祥, 潘瑞炽. 乙烯利、ACC、AOA和AgNO对绿豆下胚轴插条不定根形成的作用[J]. 热带亚热带植物学报, 2004, 12(6):506-510. [52] 李少昆, 王崇桃. 乙烯利对玉米根系的影响[J]. 植物生理学通讯, 1990(5):26-28. [53] Pierik R, Sasidharan R, Voesenek LACJ.Growth control by ethylene:Adjusting phenotypes to the environment[J]. J Plant Growth Regul, 2007, 26:188-200. [54] Yang J, Zhang J, Liu K, et al.Involvement of polyamines in the drought resistance of rice[J]. Journal of Experimental Botany, 2007, 58(6):1545. [55] 陈坤明, 张承烈. 干旱期间小麦叶片多胺含量与作物抗旱性的关系[J]. 植物生理学报, 2000, 26(5):381-386. [56] 许振柱, 于振文, 亓新华, 等. 土壤干旱对冬小麦旗叶乙烯释放、多胺积累和细胞质膜的影响[J]. 植物生理学报, 1995, 21(3):295-301. [57] Jarvis BC, Shannon PRM, Yasmin S.Involvement of polyamines with adventitious root development in stem cuttings of mung bean[J]. Plant Cell Physiol, 1983, 24:677-683. [58] 佘丽山, 周小梅. 渗透胁迫下外源精胺对水稻幼苗多胺含量及抗旱性的影响[J]. 湖南农业科学, 2011, 17:33-35. [59] 檀建新, 史吉平, 李广敏, 等. 亚精胺对水分胁迫下玉米幼苗内源乙烯和多胺含量的影响[J]. 植物生理学通讯, 1995, 31(2):99-102. [60] Liu K, Fu H, Bei Q, et al.Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements[J]. Plant Physiology, 2000, 124(3):1315-1325. [61] 关军锋, 刘海龙, 李广敏. 水分胁迫下小麦根叶多胺含量及其氧化酶活性变化[J]. 植物生态学报, 2003(5):525-527. [62] 关军锋, 曹君霞, 及华, 等. 根施外源多胺抑制剂MGBG和D-ARG对小麦幼苗抗旱性的影响[J]. 华北农学报, 2007, 22(5):24-26. [63] Wei Z, Li J.Brassinosteroids regulate root growth, development, and symbiosis[J]. Mol Plant, 2016, 9(1):86-100. [64] Haubrick LL, Assmann SM.Brassinosteroids and plant function:some clues, more puzzles[J]. Plant Cell Environ, 2006, 29(3):446-457. [65] 赵雪松, 王倩, 闫青地, 等. 油菜素内酯对水稻根系发育的调控作用[J]. 中国细胞生物学学报, 2016, 38:1191-1198. [66] Farooq M, Basra SMA, Wahid A, et al.Improving the drought tolerance in rice(Oryza sativa L.)by exogenous application of salicylic acid[J]. Journal of Agronomy and Crop Science, 2009, 195:237-246. [67] Kadioglu A, Saruhan N, Sağlam A, et al.Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system[J]. Plant Growth Regul, 2011, 64:27-37. [68] 单长卷张飞扬. 水杨酸对干旱下新单29玉米幼苗根系抗氧化特性的影响[J]. 江苏农业科学, 2015, 43(2):102-104. [69] 李才生, 秦燕, 宗盼. 水杨酸对玉米幼苗根系生长及细胞膜透性的影响[J]. 广东农业科学, 2009, 10:32-34. [70] Azooz MM, Youssef MM.Evaluation of heat shock and salicylic acid treatments as inducers of drought stress tolerance in Hassawi wheat[J]. Amer J Plant Physiol, 2010, 5:56-70. [71] Loutfy N, El-Tayeb MA, Hassanen AM, et al.Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat(Triticum aestivum)[J]. J Plant Research, 2012, 125(1):173-184. [72] 李海航, 潘瑞炽. 茉莉酸甲酯对绿豆下胚轴插条生根的影响[J]. 华南师范大学学报:自然科学版, 1998, (1):88. [73] 杨进, 李晓. 二氢茉莉酸丙酯浸根处理对水稻移栽苗某些生理特性的影响[J]. 荆门职业技术学院学报, 2000, 15(6):29-31. [74] 王树才, Ichii M, TAKETA S, 等. 茉莉酸对水稻侧根发生的影响(英文)[J]. 植物学报:英文版, 2002, 44(4):502-504. [75] Xin ZY, Zhou X, Pilet E.Level changes of jasmonic, abscisic, and indole-1y1-acetic acids in Maize under desiccation stress[J]. Journal of Plant Physiology, 1997, 1:120-124. [76] Gomez-Roldan V, Fermas S, Philip BB, et a1. Strigolactone inhibition ofshoot branching[J]. Nature, 2008, 455(7210):189-194. [77] Umehara M, Hanada A, Yoshida S, et a1. Inhibition of shoot branching by new terpenoid plant hormones[J]. Nature, 2008, 455:l95-200. [78] Kapulnik Y, Delaux PM, Resnick N, et al.Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis[J]. Planta, 2011, 233(1):209-216. [79] Ruyter-Spira C, Kohlen W, Charnikhova T, et al.Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis:another belowground role for strigolactones?[J]. Plant Physiology, 2011, 155(2):721-734. [80] Kohlen W, Charnikhova L, Lammers M, et a1. The tomato CAROTENOID CLEAvAGE DIOXYGENASE8(S1CCD8)regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis[J]. The New Phytologist, 2012, 196(2):535-547. [81] Rasmussen A, Mason MG, Cuyer CD, et a1. Strigolactones suppress adventitious rooting in Arabidopsis and pea[J]. Plant Physiology, 2012, 158(4):1976-1987. [82] Ha CV, Leyva-González MA, Osakabe Y, et al.Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. Proc Natl Acad Sci U S A, 2014, 111(2):851-856. [83] López-Ráez JA.How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis?[J]Planta, 2016, 243(6):1375-1385. [84] Rowe JH, Topping JF, Liu J, et al.Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin[J]. New Phytol, 2016, 211, 225-239. [85] Haider I, Andreo-Jimenez B, Bruno M, et al.The interaction of strigolactones with abscisic acid during the drought response in rice[J]. Journal of Experimental Botany, 2018, 69(9):2403-2414. [86] Xu W, Jia L, Shi W, et al.Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytol, 2013, 197(1):139-150. [87] Spollen WG, Lenoble ME, Samuels TD, et al.Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production[J]. Plant Physiol, 2000, 122:967-976. [88] Ruiz-lozano JM, Aroca R, Zamarreño ÁM, et al. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato[J]. Plant Cell & Environment, 2016, 39(2):441-452. [89] Visentin I, Vitali M, Ferrero M, et al.Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato[J]. New Phytologist, 2016, 212(4):954-963. [90] Sánchez-Romera B, Ruiz-Lozano JM, Zamarreño ÁM, et al.Arbuscular mycorrhizal symbiosis and methyl jasmonate avoid the inhibition of root hydraulic conductivity caused by drought[J]. Mycorrhiza, 2016, 26(2):111-122. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[3] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[4] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[5] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[6] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[7] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[8] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[9] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[10] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[11] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[12] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[13] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
[14] | 于波, 秦晓惠, 赵杨. 植物感应干旱信号的机制[J]. 生物技术通报, 2023, 39(11): 6-17. |
[15] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||